Answer:
a. Portrays the case of two triangles being equal if two angles and the line between them are equal
b. The case of two triangles being equal when two of their lines are equal, compared 2 by 2 and the angles between them are equal
c. The case of two triangles being equal when all lines are equal, compared 2 by 2
Answer:
x = 13 smaller integer
x + 2 = 15 the other integer
Step-by-step explanation:
x = the smaller integer
x + 2 = the next integer
7(x) = 61 + 2(x + 2)
7x = 61 + 2x +4
5x = 61 + 4
5x = 65
x = 13 smaller integer
x + 2 = 15 the other integer
Answer:
(E) 0.71
Step-by-step explanation:
Let's call A the event that a student has GPA of 3.5 or better, A' the event that a student has GPA lower than 3.5, B the event that a student is enrolled in at least one AP class and B' the event that a student is not taking any AP class.
So, the probability that the student has a GPA lower than 3.5 and is not taking any AP classes is calculated as:
P(A'∩B') = 1 - P(A∪B)
it means that the students that have a GPA lower than 3.5 and are not taking any AP classes are the complement of the students that have a GPA of 3.5 of better or are enrolled in at least one AP class.
Therefore, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
Where the probability P(A) that a student has GPA of 3.5 or better is 0.25, the probability P(B) that a student is enrolled in at least one AP class is 0.16 and the probability P(A∩B) that a student has a GPA of 3.5 or better and is enrolled in at least one AP class is 0.12
So, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∪B) = 0.25 + 0.16 - 0.12
P(A∪B) = 0.29
Finally, P(A'∩B') is equal to:
P(A'∩B') = 1 - P(A∪B)
P(A'∩B') = 1 - 0.29
P(A'∩B') = 0.71
Step-by-step explanation:
Given
(x1 , y1) = ( 0 , 3)
(x2 , y2) = ( 1 , 8)
Now
Gradient =


Hope it will help :)