I think it’s c but don’t go with me see if others answer with a different answer :)
Answer:
6750
Step-by-step explanation:
4 digit numbers are 1000,1001,1002,...,9999
let numbers=n
d=1001-1000=1
9999=1000+(n-1)1
9999-1000=n-1
8999+1=n
n=9000
now let us find the 4 digit numbers divisible by 4
4| 1000
______
| 250
4 |9999
_____
| 2499-3
9999-3=9996
so numbers are 1000,1004,1008,...,9996
a=1000
d=1004-1000=4
let N be number of terms
9996=1000+(N-1)4
9996-1000=(N-1)4
8996=(N-1)4
N-1=8996/4=2249
N=2249+1=2250
so number of 4 digit numbers not divisible by 4=9000-2250=6750
Answer:
(4, 80) Which is L
Step-by-step explanation:
First number should be on the X axis and the second on the Y axis.
The <span>given the piecewise function is :
</span>
![f(x) = \[ \begin{cases} 2x & x \ \textless \ 1 \\ 5 & x=1 \\ x^2 & x\ \textgreater \ 1 \end{cases} \]](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5C%5B%20%5Cbegin%7Bcases%7D%20%0A%20%20%20%20%20%202x%20%26%20x%20%5C%20%5Ctextless%20%5C%20%201%20%5C%5C%0A%20%20%20%20%20%205%20%26%20x%3D1%20%5C%5C%0A%20%20%20%20%20%20x%5E2%20%26%20x%5C%20%5Ctextgreater%20%5C%201%20%0A%20%20%20%5Cend%7Bcases%7D%0A%5C%5D)
To find f(5) ⇒ substitute with x = 5 in the function → x²
∴ f(5) = 5² = 25
To find f(2) ⇒ substitute with x = 5 in the function → x²
∴ f(2) = 2² = 4
To find f(-2) ⇒ substitute with x = 5 in the function → 2x
∴ f(-2) = 2 * (-2) = -4
To find f(1) ⇒ substitute with x = 1 in the function → 5
∴ f(1) = 5
================================
So, the statements which are true:<span>

</span><span>
</span>