Answer:
Mean weight = 19 pounds
Step-by-step explanation:
From the question given above, the following data were obtained:
17, 11, 21, 24, 22
Number of data (n) = 5
Mean weight =?
The mean of a set of data is the value obtained by adding all the data together and dividing the result obtained by the total number of data. Thus, the mean can be obtained as follow:
Summation of data = 17+ 11 + 21 + 24 + 22
= 95
Number of data = 5
Mean = Summation of data / Number of data
Mean = 95 / 5
Mean weight = 19 pounds
Therefore, the mean weight of the data is 19 pounds
I have solved the answer in the pic below, hope it helpss!!!!
The metric unit of a quantity is simply the unit of measurement of the quantity
The volumes of the crashed tomato cans are 1184 milliliters and 1.184 liters
The volume of the crushed tomato can is given as:

From the question, we have the following conversion ratio

So, the volume in milliliters becomes

Multiply

To convert the unit to liters, we simply divide the volume by 1000.
So, we have:


Hence, the equivalent volumes are 1184 milliliters and 1.184 liters
Read more about metric units at:
brainly.com/question/2004114
Answer:
So, the volume is:

Step-by-step explanation:
We get the limits of integration:

We use the spherical coordinates and we calculate a triple integral:
![V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}\int_0^4 \rho^2 \sin \varphi \, d\rho\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \left[\frac{\rho^3}{3}\right]_0^4\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \cdot \frac{64}{3} \, d\varphi\, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} [-\cos \varphi]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\](https://tex.z-dn.net/?f=V%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%5Cint_0%5E4%20%20%5Crho%5E2%20%5Csin%20%5Cvarphi%20%5C%2C%20d%5Crho%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%5Csin%20%5Cvarphi%20%5Cleft%5B%5Cfrac%7B%5Crho%5E3%7D%7B3%7D%5Cright%5D_0%5E4%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%5Csin%20%5Cvarphi%20%5Ccdot%20%5Cfrac%7B64%7D%7B3%7D%20%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5B-%5Ccos%20%5Cvarphi%5D_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%20%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Csqrt%7B2%7D%20%5C%2C%20d%5Ctheta%5C%5C%5C%5C)
we get:
![V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\V=\frac{64\sqrt{2}}{3}\cdot[\theta]_0^{2\pi}\\\\V=\frac{128\sqrt{2}\pi}{3}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Csqrt%7B2%7D%20%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%5Csqrt%7B2%7D%7D%7B3%7D%5Ccdot%5B%5Ctheta%5D_0%5E%7B2%5Cpi%7D%5C%5C%5C%5CV%3D%5Cfrac%7B128%5Csqrt%7B2%7D%5Cpi%7D%7B3%7D)
So, the volume is:
