Answer:
S = [0.2069,0.7931]
Step-by-step explanation:
Transition Matrix:
![P=\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]](https://tex.z-dn.net/?f=P%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.31%260.69%5C%5C0.18%260.82%5Cend%7Barray%7D%5Cright%5D)
Stationary matrix S for the transition matrix P is obtained by computing powers of the transition matrix P ( k powers ) until all the two rows of transition matrix p are equal or identical.
Transition matrix P raised to the power 2 (at k = 2)
![P^{2} =\left[\begin{array}{ccc}0.2203&0.7797\\0.2034&0.7966\end{array}\right]](https://tex.z-dn.net/?f=P%5E%7B2%7D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.2203%260.7797%5C%5C0.2034%260.7966%5Cend%7Barray%7D%5Cright%5D)
Transition matrix P raised to the power 3 (at k = 3)
![P^{3} =\left[\begin{array}{ccc}0.2203&0.7797\\0.2034&0.7966\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]](https://tex.z-dn.net/?f=P%5E%7B3%7D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.2203%260.7797%5C%5C0.2034%260.7966%5Cend%7Barray%7D%5Cright%5D%20X%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.31%260.69%5C%5C0.18%260.82%5Cend%7Barray%7D%5Cright%5D)
![P^{3} =\left[\begin{array}{ccc}0.2086&0.7914\\0.2064&0.7936\end{array}\right]](https://tex.z-dn.net/?f=P%5E%7B3%7D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.2086%260.7914%5C%5C0.2064%260.7936%5Cend%7Barray%7D%5Cright%5D)
Transition matrix P raised to the power 4 (at k = 4)
![P^{4} =\left[\begin{array}{ccc}0.2086&0.7914\\0.2064&0.7936\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]](https://tex.z-dn.net/?f=P%5E%7B4%7D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.2086%260.7914%5C%5C0.2064%260.7936%5Cend%7Barray%7D%5Cright%5D%20X%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.31%260.69%5C%5C0.18%260.82%5Cend%7Barray%7D%5Cright%5D)
![P^{4} =\left[\begin{array}{ccc}0.2071&0.7929\\0.2068&0.7932\end{array}\right]](https://tex.z-dn.net/?f=P%5E%7B4%7D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.2071%260.7929%5C%5C0.2068%260.7932%5Cend%7Barray%7D%5Cright%5D)
Transition matrix P raised to the power 5 (at k = 5)
![P^{5} =\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]](https://tex.z-dn.net/?f=P%5E%7B5%7D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.31%260.69%5C%5C0.18%260.82%5Cend%7Barray%7D%5Cright%5D%20X%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.31%260.69%5C%5C0.18%260.82%5Cend%7Barray%7D%5Cright%5DX%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.31%260.69%5C%5C0.18%260.82%5Cend%7Barray%7D%5Cright%5DX%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.31%260.69%5C%5C0.18%260.82%5Cend%7Barray%7D%5Cright%5DX%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.31%260.69%5C%5C0.18%260.82%5Cend%7Barray%7D%5Cright%5D)
![P^{5} =\left[\begin{array}{ccc}0.2071&0.7929\\0.2068&0.7932\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]](https://tex.z-dn.net/?f=P%5E%7B5%7D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.2071%260.7929%5C%5C0.2068%260.7932%5Cend%7Barray%7D%5Cright%5D%20X%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.31%260.69%5C%5C0.18%260.82%5Cend%7Barray%7D%5Cright%5D)
![P^{5} =\left[\begin{array}{ccc}0.2069&0.7931\\0.2069&0.7931\end{array}\right]](https://tex.z-dn.net/?f=P%5E%7B5%7D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.2069%260.7931%5C%5C0.2069%260.7931%5Cend%7Barray%7D%5Cright%5D)
P⁵ at k = 5 both the rows identical. Hence the stationary matrix S is:
S = [ 0.2069 , 0.7931 ]
Answer:
2x2x2x3x7
Step-by-step explanation:
Answer:
15 < n < 25
Step-by-step explanation:
According to the triangle inequality theorem, any two sides lengths' sum should be greater than the third side. This also implies that to find the <em>possible length of the 3rd side given other two sides (let two given sides be x and y)</em>, we can say that the 3rd side length will be between x+y and x-y.
Hence, we can say that <em><u>n should be between 20+5 and 20-5</u></em>.
So, 20 - 5 < n < 20 + 5, which is
15 < n < 25
<em>This is the correct answer.</em>
A would be 1 as b would be -4