With the given information, we can create several equations:
120 = 12x + 2y
150 = 10x + 10y
With x being the number of rose bushes, and y being the number of gardenias.
To find the values of the variables, we can use two methods: Substitution or Elimination
For this case, let us use elimination. To begin, let's be clear that we are going to be adding these equations together. Therefore, in order to get the value of one variable, we must cancel one of them out - it could be x or y, it doesn't matter which one you decide to cancel out. Let's cancel the x out:
We first need to multiply the equations by numbers that would cause the x's to cancel out - and this can be done as follows:
-10(120 = 12x + 2y)
12(150 = 10x + 10y) => Notice how one of these is negative
Multiply out:
-1200 = -120x - 20y
+ 1800 = 120x + 120y => Add these two equations together
---------------------------------
600 = 100y
Now we can solve for y:
y = 6
With this value of y known, we can then pick an equation from the beginning of the question, and plug y in to solve for x:
120 = 12x + 2y => 120 = 12x + 2(6)
Now we can solve for x:
120 = 12x + 12 => 108 = 12x
x = 9
So now we know that x = 9, and y = 6.
With rose bushes being x, we now know that the cost of 1 rose bush is $9.
With gardenias being y, we now know that the cost of 1 gardenia is $6.
Answer:
x = 4
Step-by-step explanation:
Given
=
( cross- multiply )
3x = 12 ( divide both sides by 3 )
x = 4
Answer:
(-∞,∞)
Step-by-step explanation:
The domain is all possible x values of the function
There are no constraints or holes for this and therefore the domain is all real numbers
Answer:C
Step-by-step explanation:
The answer is C because the minimum is 33 and the maximum is 51. The first quartile is 33. THE SECOND QUATILE IS 39 and the 3rd quartile is 47.