Answer:
(2,2)
Step-by-step explanation:
first take x-y=0 and multiply it by -5 you will then get this
-5x+5y=0
5x-2y=6
add those together
3y=6
divide by 3
y=2
now plug 2 in for y
x-2=0
add 2 to both sides
x=2
The answer is A. (2,2)....
Answer:
(A) Set A is linearly independent and spans
. Set is a basis for
.
Step-by-Step Explanation
<u>Definition (Linear Independence)</u>
A set of vectors is said to be linearly independent if at least one of the vectors can be written as a linear combination of the others. The identity matrix is linearly independent.
<u>Definition (Span of a Set of Vectors)</u>
The Span of a set of vectors is the set of all linear combinations of the vectors.
<u>Definition (A Basis of a Subspace).</u>
A subset B of a vector space V is called a basis if: (1)B is linearly independent, and; (2) B is a spanning set of V.
Given the set of vectors
, we are to decide which of the given statements is true:
In Matrix
, the circled numbers are the pivots. There are 3 pivots in this case. By the theorem that The Row Rank=Column Rank of a Matrix, the column rank of A is 3. Thus there are 3 linearly independent columns of A and one linearly dependent column.
has a dimension of 3, thus any 3 linearly independent vectors will span it. We conclude thus that the columns of A spans
.
Therefore Set A is linearly independent and spans
. Thus it is basis for
.
C bc the person said c so it c :)