1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helen [10]
3 years ago
5

PLEASE HELP ME!!! THANK YOU!!

Mathematics
1 answer:
vekshin13 years ago
7 0

Answer:

uuum

Step-by-step explanation:

You might be interested in
Ezra works two summer jobs to save for a laptop that costs at least $1100. He charges $15/hr to mow lawns and $10/hr to walk dog
LiRa [457]

\\
\text{Ezra works two summer jobs to save for a laptop that costs at least }\$1100\\
\\
\text{also given that he charges 15 dollars per hour to mow lawns and }\\
\text{10 dollars per hour to walk dogs.}\\
\\
\text{so if he mow lawns for x hours and walk the dogs for y hours in summer,}\\
\text{then the inequality that modeles this data is}\\
\\
15x+10 y \geq 1100

\text{now suppose Ezra decides to also spend more than }\$80 \text{ on a printer,}\\
\text{so the total expences he want for laptop and printer is}=1100+80=1180\\
\\
\text{so now the inequality becomes: }

15 x+10 y >1180

6 0
3 years ago
Read 2 more answers
Janette measures the heights in inches of some of the flowers in her garden to see which ones are growing more. The heights are
jeyben [28]

Answer:

i think it is A

Step-by-step explanation:

3 0
3 years ago
Is 1188 a perfect cube . if not by which smallest natural number should 1188 be divided so that the quotient is a perfect cube
nika2105 [10]
1188 = 2 * 2 * 11 * 3 * 3 * 3

11 has only 1 factor present so 11 must be one of the things you divide by
2 * 2 = 4 is another one. In order to have a perfect cube you need 3 prime factors not just 2

So 1188  must be divided by 11 * 4 = 44
When you do that, you get 27 which is a perfect cube.
8 0
3 years ago
Soommeee Onneeee Heeellpppppp!!!
Dima020 [189]
The domain is the set of x-values: {-3, 0, 3}.
The range is the set of y-values: {-6, 0, 6}.

The appropriate choice is ...
  a. domain: {-3, 0, 3}, range: {-6, 0, 6}
5 0
4 years ago
Determine whether the given system has a unique solution, no solution, or infinitely many solutions.
victus00 [196]

Answer:

The system has no solution.

Step-by-step explanation:

To find the solution to this system of linear equations

\left\begin{array}{ccccc}-3x_1&+x_2&-2x_3&=&8&\\x_1&+5x_2&-x_3&=&4&\\-x_1&+11x_2&-4x_3&=&1&\end{array}\right

First, state the problem in matrix form, this means, extracting only the numbers, and putting them in a box.

\left[ \begin{array}{ccc|c} -3 & 1 & -2 & 8 \\\\ 1 & 5 & -3 & 4 \\\\ -1 & 11 & -4 & 1 \end{array} \right]

This is called an augmented matrix. The word “augmented” refers to the vertical line, which we draw to remind ourselves where the equals sign belong

Next, transform the augmented matrix to the reduced row echelon form with the help of Row Operations.

Row Operation 1: multiply the 1st row by -1/3

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{3} & \frac{2}{3} & - \frac{8}{3} \\\\ 1 & 5 & -1 & 4 \\\\ -1 & 11 & -4 & 1 \end{array} \right]

Row Operation 2: add -1 times the 1st row to the 2nd row

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{3} & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & \frac{16}{3} & - \frac{5}{3} & \frac{20}{3} \\\\ -1 & 11 & -4 & 1 \end{array} \right]

Row Operation 3: add 1 times the 1st row to the 3rd row

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{3} & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & \frac{16}{3} & - \frac{5}{3} & \frac{20}{3} \\\\ 0 & \frac{32}{3} & - \frac{10}{3} & - \frac{5}{3} \end{array} \right]

Row Operation 4: multiply the 2nd row by 3/16

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{3} & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & 1 & - \frac{5}{16} & \frac{5}{4} \\\\ 0 & 0 & 0 & -15 \end{array} \right]

Row Operation 5: add -32/3 times the 2nd row to the 3rd row

\left[ \begin{array}{ccc|c} 1 &- \frac{1}{3}  & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & 1 & - \frac{5}{16} & \frac{5}{4} \\\\ 0 & 0 & 0 & -15 \end{array} \right]

Row Operation 6: multiply the 3rd row by -1/15

\left[ \begin{array}{ccc|c} 1 &- \frac{1}{3}  & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & 1 & - \frac{5}{16} & \frac{5}{4} \\\\ 0 & 0 & 0 & 1 \end{array} \right]

Row Operation 7: add -5/4 times the 3rd row to the 2nd row

\left[ \begin{array}{ccc|c} 1 &- \frac{1}{3}  & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & 1 & - \frac{5}{16} & 0 \\\\ 0 & 0 & 0 & 1 \end{array} \right]

Row Operation 8: add 8/3 times the 3rd row to the 1st row

\left[ \begin{array}{ccc|c} 1 &- \frac{1}{3}  & \frac{2}{3} & 0 \\\\ 0 & 1 & - \frac{5}{16} & 0 \\\\ 0 & 0 & 0 & 1 \end{array} \right]

Row Operation 9: add 1/3 times the 2nd row to the 1st row

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{16} & 0 \\\\ 0 & 1 & - \frac{5}{16} & 0 \\\\ 0 & 0 & 0 & 1 \end{array} \right]

The reduced row echelon form of the augmented matrix is

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{16} & 0 \\\\ 0 & 1 & - \frac{5}{16} & 0 \\\\ 0 & 0 & 0 & 1 \end{array} \right]

which corresponds to the system

\left\begin{array}{ccccc}x_1&&+\frac{9}{16} x_3&=&0&\\&1x_2&-\frac{5}{16}x_3&=&0&\\&&0&=&1&\end{array}\right

Equation 3 cannot be solved, therefore, the system has no solution.

7 0
4 years ago
Other questions:
  • A line passes through the points (2, –2) and (–6, 2). The point (a, –4) is also on the line. What is the value of a?
    14·1 answer
  • Line CD contains points A (4, −7) and B (4, 8). The slope of line CD is
    8·1 answer
  • Do I write the equation y=mx+b
    9·1 answer
  • Find the third side in simplest radical form:
    14·1 answer
  • 3x + 4y = 2<br> 2x + 4y =8
    7·1 answer
  • 10 POINTS WILL MARK BRAINLIEST <br>Find the restriction on y=2x^2-8
    11·1 answer
  • HELP ASAP WHICH COLUMN DO I CHOOSE 1 2 3 OR 4?
    10·2 answers
  • Please help me
    11·1 answer
  • Pls help me with this question I need to turn this in
    13·1 answer
  • Jack's cow is tied to a
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!