Long leg = 8 → opposite
short leg = 6 → adjacent
hypotenuse = ?
8² + 6² = c²
64 + 36 = c²
100 = c²
√100 = √c²
10 = c
sin ∠BOC = opposite / hypotenuse
sin ∠BOC = 8 / 10
sin ∠BOC = 0.80
tan ∠BOC = opposite / adjacent
tan ∠BOC = 8 / 6
tan ∠BOC = 1.33
Answer:
-14x
Step-by-step explanation:
-4x+-10x =-14x
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
<span>Solución
X = {0, 121}
</span><span>espero que esto ayude</span>