Answer:
Following are the response to the given question:
Explanation:
Build a spring, sink, vertices, and vertices for each car for a household. Every unit in the stream is a human. Attach the source from each vertical of a family with such a capacity line equivalent to the family size; this sets the number of members in each household. Attach every car vertices to the sink with the edge of the car's passenger belt; this assures the correct number of people for every vehicle. Connecting every vertex in your household to any vertex in your vehicle with a capacity 1 border guarantees that one family member joins a single car. The link between both the acceptable allocation of people to vehicles as well as the maximum flow inside the graph seems clear to notice.
Answer:
see explaination for program code
Explanation:
interface Runner
{
public abstract void run();
}
class Machine implements Runner
{
public void run()
{
System.out.println("Machine is running");
}
}
class Athlete implements Runner
{
public void run()
{
System.out.println("Athlete is running");
}
}
class PoliticalCandidate implements Runner
{
public void run()
{
System.out.println("Political Candidate is running");
}
}
class DemoRunners
{
public static void main (String[] args)
{
Machine m = new Machine();
m.run();
Athlete a = new Athlete();
a.run();
PoliticalCandidate pc = new PoliticalCandidate();
pc.run();
}
}
Answer:
All functions were written in python
addUpSquaresAndCubes Function
def addUpSquaresAndCubes(N):
squares = 0
cubes = 0
for i in range(1, N+1):
squares = squares + i**2
cubes = cubes + i**3
return(squares, cubes)
sumOfSquares Function
def sumOfSquares(N):
squares = 0
for i in range(1, N+1):
squares = squares + i**2
return squares
sumOfCubes Function
def sumOfCubes(N):
cubes = 0
for i in range(1, N+1):
cubes = cubes + i**3
return cubes
Explanation:
Explaining the addUpSquaresAndCubes Function
This line defines the function
def addUpSquaresAndCubes(N):
The next two lines initializes squares and cubes to 0
squares = 0
cubes = 0
The following iteration adds up the squares and cubes from 1 to user input
for i in range(1, N+1):
squares = squares + i**2
cubes = cubes + i**3
This line returns the calculated squares and cubes
return(squares, cubes)
<em>The functions sumOfSquares and sumOfCubes are extract of the addUpSquaresAndCubes.</em>
<em>Hence, the same explanation (above) applies to both functions</em>