Step-by-step explanation:
We need to show whether

or

so we'll do either one of them,
we'll convert f(x) to f^-1(x) and lets see if it looks like g(x).

we can also write it as:

now all we have to do is to make x the subject of the equation.



now we'll interchange the variables

this is the inverse of f(x)

and it does equal to g(x)

Hence, both functions are inverse of each other!
This can be shown graphically too:
we can see that both functions are reflections of each other about the line y=x.
Answer:
False
Step-by-step explanation:
They don't look alike
Answer:
The fraction form of 33% is 1/3
Answer:
D. y = one divided by eightx2
Step-by-step explanation:
The standard form of the equation of the parabola with a focus at (0, 2) and a directrix at y = -2 is y = one divided by eightx2.
First, we are going to find the common ratio of our geometric sequence using the formula:

. For our sequence, we can infer that

and

. So lets replace those values in our formula:


Now that we have the common ratio, lets find the explicit formula of our sequence. To do that we are going to use the formula:

. We know that

; we also know for our previous calculation that

. So lets replace those values in our formula:

Finally, to find the 9th therm in our sequence, we just need to replace

with 9 in our explicit formula:



We can conclude that the 9th term in our geometric sequence is <span>
1,562,500</span>