Five voted for green or yellow and 10 voted for red or blue
For the first question the answer is the second option.
For the second question the answer is the first option.
Hope I didn't mess up for your sake
Answer:
E
Step-by-step explanation:
Answer:
We have the equation
![c_1\left[\begin{array}{c}0\\0\\0\\1\end{array}\right] +c_2\left[\begin{array}{c}0\\0\\3\\1\end{array}\right] +c_3\left[\begin{array}{c}0\\4\\3\\1\end{array}\right] +c_4\left[\begin{array}{c}8\\4\\3\\1\end{array}\right] =\left[\begin{array}{c}0\\0\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=c_1%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_2%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_4%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Then, the augmented matrix of the system is
![\left[\begin{array}{cccc}0&0&0&8\\0&0&4&4\\0&3&3&3\\1&1&1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D0%260%260%268%5C%5C0%260%264%264%5C%5C0%263%263%263%5C%5C1%261%261%261%5Cend%7Barray%7D%5Cright%5D)
We exchange rows 1 and 4 and rows 2 and 3 and obtain the matrix:
![\left[\begin{array}{cccc}1&1&1&1\\0&3&3&3\\0&0&4&4\\0&0&0&8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%261%261%261%5C%5C0%263%263%263%5C%5C0%260%264%264%5C%5C0%260%260%268%5Cend%7Barray%7D%5Cright%5D)
This matrix is in echelon form. Then, now we apply backward substitution:
1.

2.

3.

4.

Then the system has unique solution that is
and this imply that the vectors
are linear independent.
I think it might be 20 I don't really know that one