Answer:
- the given dimension was used as the radius
- 5.57 m³
Step-by-step explanation:
The volume of a sphere can be found using the formula ...
V = 4/3πr³ . . . . . where r is the radius
__
The figure points to a diameter line and indicates 2.2 m. The arrowhead is in the middle of a radius line, making it easy to interpret the dimension as the radius of the sphere.
If 2.2 m is used as the radius, the volume is computed to be ...
V = 4/3π(2.2 m)³ ≈ 44.58 m³
This agrees with your friend's volume, suggesting the diameter was used in place of the radius in the computation.
__
The correct volume, using 2.2 m as the diameter, is ...
V = 4/3π(1.1 m)³ ≈ 5.57 m³
3 + (2 + 8)^2 / 4 * (1/2)^4
3 + 10^2 / 4 * (1/2)^4
3 + 100/4 * (1/2)^4
3 + 25 * 1/16
3 + 25/16
48/16 + 25/16
73/16
4 9/16 <==
Answer:
-1
Step-by-step explanation:
See the attachment for the polynomial long division. The constant in the quotient is -1.
_____
Here, there is a remainder of -x. If there were no remainder the constant in the quotient is the ratio of the constant in the dividend to the constant in the divisor: -2/2 = -1.
That could be a first guess in a "guess and check" solution approach.
<em>Guess</em>: first term of binomial quotient is (2x^3)/x^2 = 2x; last term of binomial quotient is -2/2 = -1. So, the quotient is guessed to be (2x -1).
<em>Check</em>: (2x -1)(x^2 -x +2) = 2x^3 -3x^2 +5x -2
Subtracting this from the actual dividend gives a remainder of -x. This has a lower degree than the divisor, so no further adjustment of the quotient is required.
Answer:
176.7cm^2
Step-by-step explanation:
Area of circle = π ×r^2
π×15^2
and then divide by 4 because it's one quarter of a circle