Answer:
-5
Step-by-step explanation:
Step 1: Simplify both sides of the equation.
45−(5+8y−3(y+3))=−3(3y−5)−(5(y−1)−2y+6)
45+−1(5+8y−3(y+3))=−3(3y−5)+−1(5(y−1)−2y+6)(Distribute the Negative Sign)
45+(−1)(5)+−1(8y)+−1(−3(y+3))=−3(3y−5)+−1(5(y−1))+−1(−2y)+(−1)(6)
45+−5+−8y+3y+9=−3(3y−5)+−5y+5+2y+−6
45+−5+−8y+3y+9=(−3)(3y)+(−3)(−5)+−5y+5+2y+−6(Distribute)
45+−5+−8y+3y+9=−9y+15+−5y+5+2y+−6
(−8y+3y)+(45+−5+9)=(−9y+−5y+2y)+(15+5+−6)(Combine Like Terms)
−5y+49=−12y+14
−5y+49=−12y+14
Step 2: Add 12y to both sides.
−5y+49+12y=−12y+14+12y
7y+49=14
Step 3: Subtract 49 from both sides.
7y+49−49=14−49
7y=−35
Step 4: Divide both sides by 7.
7y
7
=
−35
7
y=−5
The word probability has 11 letters, there are 2 b's, so, the probability you are asking for is P= 2/11.
Answer:
√10 / 10
Step-by-step explanation:
tan θ > 0 and sin θ < 0, so θ is in quadrant III. That means cos θ < 0.
cos(θ + π/4)
Use angle sum formula.
cos θ cos(π/4) − sin θ sin(π/4)
½√2 cos θ − ½√2 sin θ
Factor.
½√2 cos θ (1 − tan θ)
½√2 cos θ (1 − 2)
-½√2 cos θ
Write in terms of secant.
-½√2 / sec θ
Use Pythagorean identity (remember that cos θ < 0).
-½√2 / -√(1 + tan²θ)
-½√2 / -√(1 + 2²)
½√2 / √5
√10 / 10
Answer:
Step-by-step explanation:



Set each factors equal to zero.


The x-int is
