1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
3 years ago
9

Dominick iS training for a race. He spends 0.75 hours running each time he runs and 1.5 hours swimming each

Mathematics
1 answer:
Yuri [45]3 years ago
6 0

Answer:

htjyrjrjtuk6j556jj656

You might be interested in
Will give brainliest
kow [346]

Answer:

PR= 8

ST=5

Step-by-step explanation:

PQ and PR are congruent so

2x=8

x=4

2*4=8

PR=8

ST and TU are congruent so

5z=2z+3

3z=3

z=1

5*1=5

ST=5

5 0
3 years ago
Read 2 more answers
The ice cream store offers schools a discount of 12% for the month of June. The school decides to purchase ice cream bars for th
lilavasa [31]

Answer:

Divide the number of ice-cream bars into the number of people. Example: say you have 20 ice cream bars and 10 people you divide 20/10 and get 2 ice cream bars per person

Step-by-step explanation:

Are you also a simp for draco? :3

6 0
3 years ago
Find the absolute extrema of f(x) = e^{x^2+2x}f ( x ) = e x 2 + 2 x on the interval [-2,2][ − 2 , 2 ] first and then use the com
fredd [130]

f(x)=e^{x^2+2x}\implies f'(x)=2(x+1)e^{x^2+2x}

f has critical points where the derivative is 0:

2(x+1)e^{x^2+2x}=0\implies x+1=0\implies x=-1

The second derivative is

f''(x)=2e^{x^2+2x}+4(x+1)^2e^{x^2+2x}=2(2x^2+4x+3)e^{x^2+2x}

and f''(-1)=\frac2e>0, which indicates a local minimum at x=-1 with a value of f(-1)=\frac1e.

At the endpoints of [-2, 2], we have f(-2)=1 and f(2)=e^8, so that f has an absolute minimum of \frac1e and an absolute maximum of e^8 on [-2, 2].

So we have

\dfrac1e\le f(x)\le e^8

\implies\displaystyle\int_{-2}^2\frac{\mathrm dx}e\le\int_{-2}^2f(x)\,\mathrm dx\le\int_{-2}^2e^8\,\mathrm dx

\implies\boxed{\displaystyle\frac4e\le\int_{-2}^2f(x)\,\mathrm dx\le4e^8}

5 0
3 years ago
The area of a circle is 497 cm2. What is the circumference, in centimeters? Express
SVEN [57.7K]

Answer:

14π

Step-by-step explanation:

Area πr^2= 49π sq cm

so r= 7 cm

perimeter= 2πr= 14π

4 0
3 years ago
Expand the equation (p+q)^5
VashaNatasha [74]
(p + q)⁵
(p + q)(p + q)(p + q)(p + q)(p + q)
{[p(p + q) + q(p + q)][p(p + q) + q(p + q)](p + q)}
{[p(p) + p(q) + q(p) + q(q)][p(p) + p(q) + q(p) + q(q)](p + q)}
(p² + pq + pq + q²)(p² + pq + pq + q²)(p + q)
(p² + 2pq + q²)(p² + 2pq + q²)(p + q)
{[p²(p² + 2pq + q²) + 2pq(p² + 2pq + q²) + q²(p² + 2pq + q²)](p + q)}
{[p²(p²) + p²(2pq) + p²(q²) + 2pq(p²) + 2pq(2pq) + 2pq(q²) + q²(p²) + q²(2pq) + q²(q²)](p + q)}
(p⁴ + 2p³q + p²q² + 2p³q + 4p²q² + 2pq³ + p²q² + 2pq³ + q⁴)(p + q)
(p⁴ + 2p³q + 2p³q + p²q² + 4p²q² + p²q² + 2pq³ + 2pq³ + q⁴)(p + q)
(p⁴ + 4p³q + 6p²q² + 4pq³ + q⁴)(p + q)
p⁴(p + q) + 4p³q(p + q) + 6p²q²(p + q) + 4pq³(p + q) + q⁴(p + q)
p⁴(p)+ p⁴(q) + 4p³q(p) + 4p³q(q) + 6p²q²(p) + 6p²q²(q) + 4pq³(p) + 4pq³(q) + q⁴(p) + q⁴(q)
p⁵ + p⁴q + 4p⁴q + 4p³q² + 6p³q² + 6p²q³ + 4p²q³ + 4pq⁴ + pq⁴ + q⁵
p⁵ + 5p⁴q + 10p³q² + 10p²q³ + 5pq⁴ + q⁵
7 0
3 years ago
Other questions:
  • use a graphing calculator to find an equation of the line of best fit for the data. Identify and Interpret the correlation coeff
    11·1 answer
  • If a pizza is cut into twelve pieces and Tommy ate 1/4 of the pizza, how much would be left?
    14·2 answers
  • an airplane can travel 550 miles per hour. write and solve an equation to find the time it will take to fly from london to montr
    14·2 answers
  • Factor completely 3x(x + 2) + 4(x + 2). (1 point) (x + 2)(7x)
    6·1 answer
  • 3(7x+2)+6x plz answer
    8·2 answers
  • If 3(x - 4) = x + 4, then x =8
    15·1 answer
  • I NEED HELP ITS KINDA EASY BUT NOT FOR ME
    15·2 answers
  • Halp aspp<br><br><br>give brialest​
    11·1 answer
  • Are these lines parallel?
    14·1 answer
  • Why is x = y^2- 9 not a function ?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!