A
this is a geometric sequence since there exists a common ratio r between the terms
r =
=
=
= 3
B
to obtain the next term in the sequence multiply the previous term by 3
= 3
← recursive rule
C
the n th term of a geometric sequence is
=

where
is the first term in the sequence
= 7 ×
← explicit rule
The ratio is 14:5, as 42 divided by 3 is 14 and 15 divided by 3 is 5.
Answer:
Step-by-step explanation:
(A) The difference between an ordinary differential equation and an initial value problem is that an initial value problem is a differential equation which has condition(s) for optimization, such as a given value of the function at some point in the domain.
(B) The difference between a particular solution and a general solution to an equation is that a particular solution is any specific figure that can satisfy the equation while a general solution is a statement that comprises all particular solutions of the equation.
(C) Example of a second order linear ODE:
M(t)Y"(t) + N(t)Y'(t) + O(t)Y(t) = K(t)
The equation will be homogeneous if K(t)=0 and heterogeneous if 
Example of a second order nonlinear ODE:

(D) Example of a nonlinear fourth order ODE:
![K^4(x) - \beta f [x, k(x)] = 0](https://tex.z-dn.net/?f=K%5E4%28x%29%20-%20%5Cbeta%20f%20%5Bx%2C%20k%28x%29%5D%20%3D%200)
Answer: 11.5%
Explanation:Since 1 minute = 60 seconds, we multiply 12 minutes by 60 so that 12 minutes = 720 seconds. Thus, we're looking for a probability that the auditor will spend more than 720 seconds.
Now, we get the z-score for 720 seconds by the following formula:

where

So, the z-score of 720 seconds is given by:

Let
t = time for the auditor to finish his work
z = z-score of time t
Since the time is normally distributed, the probability for t > 720 is the same as the probability for z > 1.2. In terms of equation:

Hence, there is
11.5% chance that the auditor will spend more than 12 minutes in an invoice.
Answer:
slope = 4/1 or 4
Step-by-step explanation:
(2, 14)
(1, 10)
Formula = 
14-10 over 2 -1
4/ 1 = 4