Answer:
8 and 5
Step-by-step explanation:
Answer:
the first table is a non-linear relationship and the second table is a linear relation ship because the first table as a curve in its line and it is not straight making it non-linear the second table is linear because it forms a straight line making it linear
Step-by-step explanation:
to find a linear relationship place the points on the graph. then if the they form a straight line then your table is linear
Also to find a nonlinear relation ship place the points that are given to you on a graph and if they are not a straight line then they are a nonlinear relationship
Vertical stretch means the graph stretches upward, rising more rapidly than the original, the graph is steeper than the original.
<u>I</u><u>f</u><u> </u><u>w</u><u>e</u><u> </u><u>h</u><u>a</u><u>v</u><u>e</u><u> </u><u>t</u><u>o</u><u> </u><u>f</u><u>i</u><u>n</u><u>d</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>t</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>i</u><u>n</u><u>s</u><u> </u><u>t</u><u>h</u><u>e</u><u>n</u><u> </u><u>w</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>u</u><u>s</u><u>e</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>f</u><u>o</u><u>l</u><u>l</u><u>o</u><u>w</u><u>i</u><u>n</u><u>g</u><u> </u><u>rule:</u>
- <u>I</u><u>f</u><u> </u><u>E</u><u>a</u><u>c</u><u>h</u><u> </u><u>P</u><u>u</u><u>r</u><u>s</u><u>e</u><u> </u><u>C</u><u>o</u><u>n</u><u>t</u><u>a</u><u>i</u><u>n</u><u>s</u><u> </u><u>8</u><u>c</u><u>o</u><u>i</u><u>n</u><u>s</u><u> </u><u>,</u><u>t</u><u>h</u><u>e</u><u>n</u><u> </u><u>w</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>f</u><u>i</u><u>n</u><u>d</u><u> </u><u>t</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>i</u><u>n</u><u>s</u><u> </u><u>b</u><u>y</u><u> </u><u>m</u><u>u</u><u>l</u><u>t</u><u>i</u><u>p</u><u>l</u><u>y</u><u>i</u><u>n</u><u>g</u><u> </u><u>8</u><u> </u><u>t</u><u>o</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>p</u><u>u</u><u>r</u><u>s</u><u>e</u>
<u>T</u><u>h</u><u>u</u><u>s</u><u>,</u>
<h3><u>R</u><u>u</u><u>l</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>:</u></h3>
<u>︎⠀⠀ ⠀⠀ ⠀⠀ ⠀</u><u>︎⠀⠀ ⠀⠀ ⠀</u><u>8</u><u>×</u><u>T</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>N</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>P</u><u>u</u><u>r</u><u>s</u><u>e</u><u>.</u>
<h2><u>─━─━─━─━─━─━─━─━─━─━─━─━─</u></h2>
It is definitely a reflection over the horizontal (x) axis, but i think the dilation is by 2