Answer:
![6^{\frac{1}{5} }=\sqrt[5]{6}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B1%7D%7B5%7D%20%7D%3D%5Csqrt%5B5%5D%7B6%7D)
![6^{\frac{7}{5} }=\sqrt[5]{6^7}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B7%7D%7B5%7D%20%7D%3D%5Csqrt%5B5%5D%7B6%5E7%7D)
![6^{\frac{1}{6} }=\sqrt[6]{6}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%3D%5Csqrt%5B6%5D%7B6%7D)
![7^{\frac{1}{2} }=\sqrt[2]{7}](https://tex.z-dn.net/?f=7%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B7%7D)
![7^{\frac{5}{2} }=\sqrt[2]{7^5}](https://tex.z-dn.net/?f=7%5E%7B%5Cfrac%7B5%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B7%5E5%7D)
![6^{\frac{9}{2} }=\sqrt[2]{6^9}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B9%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B6%5E9%7D)
Step-by-step explanation:
A radical is the root operation for n roots such as square root or cuberoot in the form
. A fraction exponent
can be converted to the radical form.
![6^{\frac{1}{5} }=\sqrt[5]{6}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B1%7D%7B5%7D%20%7D%3D%5Csqrt%5B5%5D%7B6%7D)
![6^{\frac{7}{5} }=\sqrt[5]{6^7}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B7%7D%7B5%7D%20%7D%3D%5Csqrt%5B5%5D%7B6%5E7%7D)
![6^{\frac{1}{6} }=\sqrt[6]{6}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%3D%5Csqrt%5B6%5D%7B6%7D)
![7^{\frac{1}{2} }=\sqrt[2]{7}](https://tex.z-dn.net/?f=7%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B7%7D)
![7^{\frac{5}{2} }=\sqrt[2]{7^5}](https://tex.z-dn.net/?f=7%5E%7B%5Cfrac%7B5%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B7%5E5%7D)
![6^{\frac{9}{2} }=\sqrt[2]{6^9}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B9%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B6%5E9%7D)
Answer: 210
Step-by-step explanation:
55×12=660-500=160+50(down payment)=210
Answer:
-12
Step-by-step explanation:
ANSWER
= 200000 x (1-4.5%)^30
= 200000 x (1-0.045)^30
= 200000 x 0.955^30
= 50249.43
= <u>50249</u>
Answer:
Complementary angles form a right angle (L shape) and have a sum of 90 degrees. Supplementary angles form a straight line and have a sum of 180 degrees. If the relationship is given, you can subtract the given angle from the sum to determine the measure of the missing angle.
Step-by-step explanation:
Complementary angles form a right angle (L shape) and have a sum of 90 degrees. Supplementary angles form a straight line and have a sum of 180 degrees. If the relationship is given, you can subtract the given angle from the sum to determine the measure of the missing angle.