The answer is: [B]: "arithmetic" .
______________________________________________________
"The <u> arithmetic </u> average ignores compounding."
______________________________________________________
Answer:
8.25 Gallons
Step-by-step explanation:
2.75 gallons * 3 minutes = 8.25 gallons
Answer:
10
Step-by-step explanation:
To calculate the distance d use the distance formula
d = √ (x₂ - x₁ )² + (y₂ - y₁ )²
with (x₁, y₁ ) = (- 5, 2) and (x₂, y₂ ) = (- 5, - 8)
d = ![\sqrt{(-5+5)^2+(-8-2)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%28-5%2B5%29%5E2%2B%28-8-2%29%5E2%7D)
= ![\sqrt{0^2+(-10)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B0%5E2%2B%28-10%29%5E2%7D)
=
=
= 10
Answer:
Simple!
All you have to do is divide 3.5 by 124.25
124.25 / 3.5 = 35.5
Your answer is C.
Hope this helps!
Answer:
a) ![f(x)= \frac{1}{11-4}= \frac{1}{7}, 4 \leq x \leq 11](https://tex.z-dn.net/?f=%20f%28x%29%3D%20%5Cfrac%7B1%7D%7B11-4%7D%3D%20%5Cfrac%7B1%7D%7B7%7D%2C%204%20%5Cleq%20x%20%5Cleq%2011)
b) ![P(X\leq 7) = F(7) = \frac{7-4}{11-4}= 0.4286](https://tex.z-dn.net/?f=%20P%28X%5Cleq%207%29%20%3D%20F%287%29%20%3D%20%5Cfrac%7B7-4%7D%7B11-4%7D%3D%200.4286)
c) ![P(5 < X \leq 7)= F(7) -F(5) = \frac{7-4}{7} -\frac{5-4}{7}= 0.2857](https://tex.z-dn.net/?f=P%285%20%3C%20X%20%5Cleq%207%29%3D%20F%287%29%20-F%285%29%20%3D%20%5Cfrac%7B7-4%7D%7B7%7D%20-%5Cfrac%7B5-4%7D%7B7%7D%3D%200.2857)
d) ![P(X >5 | X \leq 7)](https://tex.z-dn.net/?f=%20P%28X%20%3E5%20%7C%20X%20%5Cleq%207%29)
And we can find this probability with this formula from the Bayes theorem:
Step-by-step explanation:
For this case we assume that the random variable X follows this distribution:
![X \sim Unif (a=4, b =11)](https://tex.z-dn.net/?f=%20X%20%5Csim%20Unif%20%28a%3D4%2C%20b%20%3D11%29)
Part a
The probability density function is given by the following expression:
![f(x) = \frac{1}{b-a} , a \leq x \leq b](https://tex.z-dn.net/?f=%20f%28x%29%20%3D%20%5Cfrac%7B1%7D%7Bb-a%7D%20%2C%20a%20%5Cleq%20x%20%5Cleq%20b)
![f(x)= \frac{1}{11-4}= \frac{1}{7}, 4 \leq x \leq 11](https://tex.z-dn.net/?f=%20f%28x%29%3D%20%5Cfrac%7B1%7D%7B11-4%7D%3D%20%5Cfrac%7B1%7D%7B7%7D%2C%204%20%5Cleq%20x%20%5Cleq%2011)
Part b
We want this probability:
![P(X \leq 7)](https://tex.z-dn.net/?f=%20P%28X%20%5Cleq%207%29)
And we can use the cumulative distribution function given by:
![F(x) = \frac{x-a}{b-a}= \frac{x-4}{11-4}](https://tex.z-dn.net/?f=%20F%28x%29%20%3D%20%5Cfrac%7Bx-a%7D%7Bb-a%7D%3D%20%5Cfrac%7Bx-4%7D%7B11-4%7D%20)
And replacing we got:
![P(X\leq 7) = F(7) = \frac{7-4}{11-4}= 0.4286](https://tex.z-dn.net/?f=%20P%28X%5Cleq%207%29%20%3D%20F%287%29%20%3D%20%5Cfrac%7B7-4%7D%7B11-4%7D%3D%200.4286)
Part c
We want this probability:
![P(5 < X \leq 7)](https://tex.z-dn.net/?f=P%285%20%3C%20X%20%5Cleq%207%29)
And we can use the CDF again and we have:
![P(5 < X \leq 7)= F(7) -F(5) = \frac{7-4}{7} -\frac{5-4}{7}= 0.2857](https://tex.z-dn.net/?f=P%285%20%3C%20X%20%5Cleq%207%29%3D%20F%287%29%20-F%285%29%20%3D%20%5Cfrac%7B7-4%7D%7B7%7D%20-%5Cfrac%7B5-4%7D%7B7%7D%3D%200.2857)
Part d
We want this conditional probabilty:
![P(X >5 | X \leq 7)](https://tex.z-dn.net/?f=%20P%28X%20%3E5%20%7C%20X%20%5Cleq%207%29)
And we can find this probability with this formula from the Bayes theorem:
![P(X >5 | X \leq 7)= \frac{P(X>5 \cap X \leq 7)}{P(X \leq 7)}= \frac{P(5](https://tex.z-dn.net/?f=%20P%28X%20%3E5%20%7C%20X%20%5Cleq%207%29%3D%20%5Cfrac%7BP%28X%3E5%20%5Ccap%20X%20%5Cleq%207%29%7D%7BP%28X%20%5Cleq%207%29%7D%3D%20%5Cfrac%7BP%285%20%3CX%20%5Cleq%207%29%7D%7BP%28X%3C7%29%7D%3D%5Cfrac%7B0.2857%7D%7B0.4286%7D%3D%200.6666%20)