Answer:
homozygous
Explanation:
when an individual both copies of a given gene have the same allele
Answer :B. By changing the shape of the enzyme's active site.
check the attachment
Explanation: This is a type of inhibition , in which a molecule binds to another part of the enzyme instead of the active site.
On binding, it disrupts the normal hydrogen bond and hydrophobic interactions holding the enzyme molecule in its three dimensional shape, therefore distorting the conformation and ACTIVE SITE of the enzyme (changed it shape).
Since the active site is the precise location enzyme must bind with substrates for enzymatic reactions,this makes the enzyme not fit for binding with the substrate, therefore the efficiency is reduced. No substrate-enzyme complex, and hence no substrate-product complex for the release of products, this brings down the turnover rate and eventually
<u>the rate of reaction of the enzyme</u>
Thus, the enzyme function is totally blocked, even in high concentration of the substrate,
Answer:
The simulation only shows how a population can change overtime in response to the changes in the environment. During the industrial revolution, one particular phenotype of moths had an advantage over the other and hence, was subjected to natural selection. What this simulation does not tell us is the causality and correlation aspect of the change that occurs in the moths. Correlation does not equal causation, and the simulation does not shed any light on these variables in this case.
Explanation:
Hope that answers the question, have a great day!
<span>The sequence of alternation of generation is; gametes->zygote->sporophyte->spores->gametophyte->gametes.
The attached diagram shows clearly this looped cycle. Alternation of generation
occurs in a more advanced land plant that
has distinct
haploid and diploid phases in their life
cycle. The diploid phase usually involves
the sporophyte while the haploid phase involves the gametophyte</span>
In animals, the circulatory system performs a similar function because it transports vital nutrients around the body of the animal, just like how xylem and phloem transport water, minerals, and sugar to different parts of the plant.