1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katarina [22]
3 years ago
9

Please help

Biology
1 answer:
Evgen [1.6K]3 years ago
5 0

Answer: Anaerobic respiration produces a relatively lesser amount of energy as compared to aerobic respiration, as glucose is not completely broken down in the absence of oxygen. In animal cells anaerobic respiration often occurs during exercise. The glucose does not get fully broken down in this process, so it does not release its full potential energy. Instead of carbon dioxide and water it breaks down to form lactic acid and a small amount of energy.

Explanation:

You might be interested in
What is the most important property of water?
Licemer1 [7]

Answer:

One of water's important properties is that it is composed of polar molecules: the hydrogen and oxygen within water molecules (H2O) form polar covalent bonds.

Explanation:

8 0
2 years ago
Read 2 more answers
The human immune system consists of a network of cells, tissues, and organs. the cardiovascular system consists of the heart, bl
Savatey [412]
They help work together because when the heart pmps blood through the body and the cells flow through the blood non stop its like a barrier of protection
8 0
2 years ago
discuss the electromagnetic spectrum and the combined absorption spectrum of chlorophylls a and b and the carotenoids. why is ch
Irina-Kira [14]

Answer:

In physics, electromagnetic radiation (EM radiation or EMR) refers to the waves (or their quanta, photons) of the electromagnetic field, propagating (radiating) through space, carrying electromagnetic radiant energy.[1] It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.[2]

Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields. In a vacuum, electromagnetic waves travel at the speed of light, commonly denoted c. In homogeneous, isotropic media, the oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. The wavefront of electromagnetic waves emitted from a point source (such as a light bulb) is a sphere. The position of an electromagnetic wave within the electromagnetic spectrum can be characterized by either its frequency of oscillation or its wavelength. Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter. In order of increasing frequency and decreasing wavelength these are: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.[3]

Electromagnetic waves are emitted by electrically charged particles undergoing acceleration,[4][5] and these waves can subsequently interact with other charged particles, exerting force on them. EM waves carry energy, momentum and angular momentum away from their source particle and can impart those quantities to matter with which they interact. Electromagnetic radiation is associated with those EM waves that are free to propagate themselves ("radiate") without the continuing influence of the moving charges that produced them, because they have achieved sufficient distance from those charges. Thus, EMR is sometimes referred to as the far field. In this language, the near field refers to EM fields near the charges and current that directly produced them, specifically electromagnetic induction and electrostatic induction phenomena.

In quantum mechanics, an alternate way of viewing EMR is that it consists of photons, uncharged elementary particles with zero rest mass which are the quanta of the electromagnetic force, responsible for all electromagnetic interactions.[6] Quantum electrodynamics is the theory of how EMR interacts with matter on an atomic level.[7] Quantum effects provide additional sources of EMR, such as the transition of electrons to lower energy levels in an atom and black-body radiation.[8] The energy of an individual photon is quantized and is greater for photons of higher frequency. This relationship is given by Planck's equation E = hf, where E is the energy per photon, f is the frequency of the photon, and h is Planck's constant. A single gamma ray photon, for example, might carry ~100,000 times the energy of a single photon of visible light.                                  

The effects of EMR upon chemical compounds and biological organisms depend both upon the radiation's power and its frequency. EMR of visible or lower frequencies (i.e., visible light, infrared, microwaves, and radio waves) is called non-ionizing radiation, because its photons do not individually have enough energy to ionize atoms or molecules or break chemical bonds. The effects of these radiations on chemical systems and living tissue are caused primarily by heating effects from the combined energy transfer of many photons. In contrast, high frequency ultraviolet, X-rays and gamma rays are called ionizing radiation, since individual photons of such high frequency have enough energy to ionize molecules or break chemical bonds. These radiations have the ability to cause chemical reactions and damage living cells beyond that resulting from simple heating, and can be a health hazard.

Explanation:

7 0
3 years ago
Three months after fertilization and development of a placenta around the developing fetus, the corpus luteum regresses and form
Serjik [45]
<span>Three months after fertilization and development of a placenta around the developing fetus, the corpus luteum regresses and forms the corpus albicans.</span> Formed placenta takes over progesterone production (which was the role of corpus luteum) and the corpus luteum degrades into a corpus albicans. The corpus luteum is being broken down by macrophages, in a process called luteolysis. The remains of the corpus albicans may persist as a scar on the ovary.
3 0
2 years ago
Which of the following is a true statement?
irakobra [83]

Answer:

I think true statement is A.

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which Soil cannot be rolled into Balls or Clumps
    12·2 answers
  • How many heart chambers does a crocodile have?
    6·2 answers
  • PLEASE ANSWER ONLY IF YOUR ANSWER IS FOR SURE!!!
    12·1 answer
  • All organisms contain and require it to survive.
    10·1 answer
  • Are Sea Anemones living or non-living? *<br> living<br> O non-living
    13·1 answer
  • Complete the following sentence.
    11·2 answers
  • The diagram shows the fossils found in different layers of a rock.
    11·2 answers
  • What do we mean when we say that the resulting ADP molecule is recycled?
    6·1 answer
  • What is the functions of the digestive, excretory, respiratory, circulatory, and lymphatic systems, and how do they interact to
    11·1 answer
  • Why are microorganisms used to produce enzymes?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!