14. 1.5, 10 <- Answer
15. 5,1 <- Answer
Proof 14
Solve the following system:
{2 x - y = -7 | (equation 1)
4 x - y = -4 | (equation 2)
Swap equation 1 with equation 2:
{4 x - y = -4 | (equation 1)
2 x - y = -7 | (equation 2)
Subtract 1/2 × (equation 1) from equation 2:
{4 x - y = -4 | (equation 1)
0 x - y/2 = -5 | (equation 2)
Multiply equation 2 by -2:
{4 x - y = -4 | (equation 1)
0 x+y = 10 | (equation 2)
Add equation 2 to equation 1:
{4 x+0 y = 6 | (equation 1)
0 x+y = 10 | (equation 2)
Divide equation 1 by 4:
{x+0 y = 3/2 | (equation 1)
0 x+y = 10 | (equation 2)
Collect results:
Answer: {x = 1.5
y = 10
Proof 15.
Solve the following system:
{5 x + 7 y = 32 | (equation 1)
8 x + 6 y = 46 | (equation 2)
Swap equation 1 with equation 2:
{8 x + 6 y = 46 | (equation 1)
5 x + 7 y = 32 | (equation 2)
Subtract 5/8 × (equation 1) from equation 2:{8 x + 6 y = 46 | (equation 1)
0 x+(13 y)/4 = 13/4 | (equation 2)
Divide equation 1 by 2:
{4 x + 3 y = 23 | (equation 1)
0 x+(13 y)/4 = 13/4 | (equation 2)
Multiply equation 2 by 4/13:
{4 x + 3 y = 23 | (equation 1)
0 x+y = 1 | (equation 2)
Subtract 3 × (equation 2) from equation 1:
{4 x+0 y = 20 | (equation 1)
0 x+y = 1 | (equation 2)
Divide equation 1 by 4:
{x+0 y = 5 | (equation 1)
0 x+y = 1 | (equation 2)
Collect results:
Answer: {x = 5 y = 1
Answer:
vertical stretch
Step-by-step explanation:
Consider the contrapositive of the statement you want to prove.
The contrapositive of the logical statement
<em>p</em> ⇒ <em>q</em>
is
¬<em>q</em> ⇒ ¬<em>p</em>
In this case, the contrapositive claims that
"If there are no scalars <em>α</em> and <em>β</em> such that <em>c</em> = <em>α</em><em>a</em> + <em>β</em><em>b</em>, then <em>a₁b₂</em> - <em>a₂b₁</em> = 0."
The first equation is captured by a system of linear equations,
or in matrix form,
If this system has no solution, then the coefficient matrix on the right side must be singular and its determinant would be
and this is what we wanted to prove. QED
The answer is 15,000 because 75000/5 = 15000.
Answer:
[-3, 3]
Step-by-step explanation:
The function/ graph is defined from -3 to 3, inclusive of those values