Answer:
The given functions are not same because the domain of both functions are different.
Step-by-step explanation:
The given functions are
![f(x)= \sqrt{\dfrac{x+1}{x-1}}](https://tex.z-dn.net/?f=f%28x%29%3D%20%5Csqrt%7B%5Cdfrac%7Bx%2B1%7D%7Bx-1%7D%7D)
![g(x) = \dfrac{\sqrt{x+1}}{\sqrt{x-1}}](https://tex.z-dn.net/?f=g%28x%29%20%3D%20%5Cdfrac%7B%5Csqrt%7Bx%2B1%7D%7D%7B%5Csqrt%7Bx-1%7D%7D)
First find the domain of both functions. Radicand can not be negative.
Domain of f(x):
![\dfrac{x+1}{x-1}>0](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%2B1%7D%7Bx-1%7D%3E0)
This is possible if both numerator or denominator are either positive or negative.
Case 1: Both numerator or denominator are positive.
![x+1\geq 0\Rightarrow x\geq -1](https://tex.z-dn.net/?f=x%2B1%5Cgeq%200%5CRightarrow%20x%5Cgeq%20-1)
![x-1\geq 0\Rightarrow x\geq 1](https://tex.z-dn.net/?f=x-1%5Cgeq%200%5CRightarrow%20x%5Cgeq%201)
So, the function is defined for x≥1.
Case 2: Both numerator or denominator are negative.
![x+1\leq 0\Rightarrow x\leq -1](https://tex.z-dn.net/?f=x%2B1%5Cleq%200%5CRightarrow%20x%5Cleq%20-1)
![x-1\leq 0\Rightarrow x\leq 1](https://tex.z-dn.net/?f=x-1%5Cleq%200%5CRightarrow%20x%5Cleq%201)
So, the function is defined for x≤-1.
From case 1 and 2 the domain of the function f(x) is (-∞,-1]∪[1,∞).
Domain of g(x):
![x+1\geq 0\Rightarrow x\geq -1](https://tex.z-dn.net/?f=x%2B1%5Cgeq%200%5CRightarrow%20x%5Cgeq%20-1)
![x-1\geq 0\Rightarrow x\geq 1](https://tex.z-dn.net/?f=x-1%5Cgeq%200%5CRightarrow%20x%5Cgeq%201)
So, the function is defined for x≥1.
So, domain of g(x) is [1,∞).
Therefore, the given functions are not same because the domain of both functions are different.