Answer:
x = 28 cm
Step-by-step explanation:
Given:
Area of link shaded regions = 84 cm²
Required:
The value of x (diameter of the semicircle/length of the rectangle)
Solution:
Diameter of the semicircle = 2r = x
Length of rectangle (L) = 2r = x
Radius of semicircle (r) = ½x
Width of rectangle (W) = radius of semicircle = ½x
Use 3.14 as π
Area of the link shaded regions = area of rectangle - area of semicircle
Thus:
Area of the link shaded regions = (L*W) - (½*πr²)
Plug in the values
84 = (x*½x) - (½*3.14*(½x)²)
84 = x²/2 - (1.57*x²/4)
84 = x²(½ - 1.57/4)
84 = x²(0.5 - 0.3925)
84 = x²(0.1075)
Divide both sides by 0.1075
84/0.1075 = x²
781.4 = x²
√781.4 = x
27.9535329 = x
x = 28 cm
Answer:
a) 0.0002
b) 0.0057
c) 0.0364
Step-by-step explanation:
Lets start by stating the probabilities of a person belonging to each policy:
Standard: 0.3
Preferred: 0.5
Ultra- Preferred: 0.2
The probability of person belonging to each policy AND dying in the next year:
Standard: 0.3 x 0.015 = 0.0045
Preferred: 0.5 x 0.002 = 0.001
Ultra- Preferred: 0.2 x 0.001 = 0.0002
a) The probability a ultra - preferred policy holder dies in the next year is 0.001. To find the probability of a person being both a ultra - preferred policy holder AND die in the next year is: 0.001 x 0.2= 0.0002
b) The probability is given by adding the probabilities calculated before :
0.0045 + 0.001 + 0.0002 = 0.0057
c) We use the results above again. This is 0.0002 / (0.001 + 0.0045). The answer comes out to be 0.0364
120% of 37 is 44.4. Good luck!