Tienes que hallar el mínimo común múltiplo de las 3 cantidades.
18= 2×3²
24= 2³×3
36= 2²×3²
mcm(18,24,36) = 2³×3²=8×9= 72
Eso quier decir que si partieron a la misma hora se encontraran de nuevo en el punto de partida 72 minutos después de la salida.
Las vueltas que habrán realizado será el resultado de dividir 72 entre el tiempo que tardan en dar una vuelta
<span>Mayor: </span> = 4
<span>Mediano: </span> = 3
<span>Pequeño: </span> = 2
Soluciónes:
se vuelven a encontrar a los 72 min de la salida
<span>El mayor dió 4 vueltas, el mediano 3 y el pequeño 2</span>
Answer:
17.9°
Step-by-step explanation:
From trigonometry:
Opposite = 14
Adjacent = x
theta = 38°
hence;
tan theta = opposite/ adjacent
tan38° = 14/x
x = 14/tan38°
x = 17.9°
Step-by-step explanation:

Answer:
a) 
b) 
c) 
With a frequency of 4
d) 
<u>e)</u>
And we can find the limits without any outliers using two deviations from the mean and we got:

And for this case we have two values above the upper limit so then we can conclude that 1500 and 3000 are potential outliers for this case
Step-by-step explanation:
We have the following data set given:
49 70 70 70 75 75 85 95 100 125 150 150 175 184 225 225 275 350 400 450 450 450 450 1500 3000
Part a
The mean can be calculated with this formula:

Replacing we got:

Part b
Since the sample size is n =25 we can calculate the median from the dataset ordered on increasing way. And for this case the median would be the value in the 13th position and we got:

Part c
The mode is the most repeated value in the sample and for this case is:

With a frequency of 4
Part d
The midrange for this case is defined as:

Part e
For this case we can calculate the deviation given by:

And replacing we got:

And we can find the limits without any outliers using two deviations from the mean and we got:

And for this case we have two values above the upper limit so then we can conclude that 1500 and 3000 are potential outliers for this case
Answer:

Step-by-step explanation:
Using Pythagoras' identity in the right triangle
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides.
let h represent the hypotenuse, then
h² = 5² + (
)² = 25 + 2 = 27 ( take the square root of both sides )
h =
← exact value