Room temperature..type of plant..too much sunlight..too much water..or food..thats all i got.
Differentiation in plants refers to the processes by which distinct cell types arise from precursor cells and become different from each other. Plants have about a dozen basic cell types that are required for everyday functioning and survival. Additional cell types are required for sexual reproduction. While the basic diversity of plant cell types is low compared to animals, these cells are strikingly different. For example, some cells such as parenchyma cells retain the potential to respond to environmental and/or hormonal signals throughout their life and, under the right conditions, can be transformed into another cell type (transdifferentiation). Other cells such as the water-conducting vessel elements undergo cell death as part of their differentiation pathway and thus can never transdifferentiate to another cell type
Read more: http://www.biologyreference.com/Co-Dn/Differentiation-in-Plants.html#ixzz54pAhWVdn
Answer:
During fertilization, the sperm and egg unite in one of the fallopian tubes to form a zygote. Then the zygote travels down the fallopian tube, where it becomes a morula. Once it reaches the uterus, the morula becomes a blastocyst. The blastocyst then burrows into the uterine lining — a process called implantation.
Explanation:
Answer:
Ribose and Deoxyribose. The 5-carbon sugars ribose and deoxyribose are important components of nucleotides, and are found in RNA and DNA, respectively. The sugars found in nucleic acids are pentose sugars; a pentose sugar has five carbon atoms. A combination of a base and a sugar is called a nucleoside.