I'd suggest getting a Texas Instruments TI-84 plus calculator or use des mos .com scientific
But baby am still catching grenade for you trow my head on a plane for you I would do anything for you
to get the slope of a line all we need is two points off of it, so let's get two points from that table

![\bf \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{\frac{5}{3}}-\stackrel{y1}{\frac{1}{3}}}}{\underset{run} {\underset{x_2}{3}-\underset{x_1}{1}}}\implies \cfrac{~~\frac{4}{3}~~}{2}\implies \cfrac{~~\frac{4}{3}~~}{\frac{2}{1}}\implies \cfrac{\stackrel{2}{~~\begin{matrix} 4 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{3}\cdot \cfrac{1}{~~\begin{matrix} 2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\implies \cfrac{2}{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B%5Cfrac%7B5%7D%7B3%7D%7D-%5Cstackrel%7By1%7D%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B3%7D-%5Cunderset%7Bx_1%7D%7B1%7D%7D%7D%5Cimplies%20%5Ccfrac%7B~~%5Cfrac%7B4%7D%7B3%7D~~%7D%7B2%7D%5Cimplies%20%5Ccfrac%7B~~%5Cfrac%7B4%7D%7B3%7D~~%7D%7B%5Cfrac%7B2%7D%7B1%7D%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7B2%7D%7B~~%5Cbegin%7Bmatrix%7D%204%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B3%7D%5Ccdot%20%5Ccfrac%7B1%7D%7B~~%5Cbegin%7Bmatrix%7D%202%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%5Cimplies%20%5Ccfrac%7B2%7D%7B3%7D)
Answer:
The verticle angles are AB and ED
Step-by-step explanation:
Answer:
y=4
Step-by-step explanation:
3(3y − 12) = 0
Divide by 3
3/3(3y − 12) = 0/3
3y-12 = 0
Add 12 to each side
3y-12+12 = 0+12
3y = 12
3y/3 = 12/3
y = 4