Answer:
$546
Step-by-step explanation:
455*.20=91
91+455+546
If you actually draw the coordinates, it should be a parallelogram.
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
<h3>¿Cuál es el volumen remanente entre una caja cúbica vacía y una pelota?</h3>
En esta pregunta debemos encontrar el volumen <em>remanente</em> entre el espacio de una caja <em>cúbica</em> y una esfera introducida en el elemento anterior. El volumen <em>remanente</em> es igual a sustraer el volumen de la pelota del volumen de la caja.
Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:
Cubo
V = l³
V = (4 cm)³
V = 64 cm³
Esfera
V' = (4π / 3) · R³
V' = (4π / 3) · (2 cm)³
V' ≈ 33.5103 cm³
Segundo, determinamos la diferencia de volumen entre los dos elementos:
V'' = V - V'
V'' = 64 cm³ - 33.5103 cm³
V'' = 30.4897 cm³
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
Para aprender más sobre volúmenes: brainly.com/question/23940577
#SPJ1
Answer:
The solution is
.
Step-by-step explanation:
A first order differential equation
is called a separable equation if the function
can be factored into the product of two functions of
and
:

where
and
are continuous functions.
We have the following differential equation

In the given case
and
.
We divide the equation by
and move
to the right side:

Next, integrate both sides:

Now, we solve for 

We use the initial condition
to find the value of C.

Therefore,

The areas of the figures are 4(x + 1), 7(d + 4) and y(y + 3)
<h3>How to determine the total areas?</h3>
<u>The figure 1</u>
In this figure, we have
Length = x + 1
Width = 4
The area is calculated as:
Area = Length * Width
So, we have
Area = 4(x + 1)
<u>The figure 2</u>
In this figure, we have
Length = d + 4
Width = 7
The area is calculated as:
Area = Length * Width
So, we have
Area = 7(d + 4)
<u>The figure 3</u>
In this figure, we have
Length = y + 3
Width = y
The area is calculated as:
Area = Length * Width
So, we have
Area = y(y + 3)
Hence, the areas of the figures are 4(x + 1), 7(d + 4) and y(y + 3)
Read more about areas at:
brainly.com/question/24487155
#SPJ1