Answer:
the total of angle's in traingle is 180
so 85+53+c=180
c=180-138
c=42
tis noteworthy that the segment contains endpoints of A and C and the point B is in between A and C cutting the segment in a 1:2 ratio,
![\bf \textit{internal division of a line segment using ratios} \\\\\\ A(-9,-7)\qquad C(x,y)\qquad \qquad \stackrel{\textit{ratio from A to C}}{1:2} \\\\\\ \cfrac{A\underline{B}}{\underline{B} C} = \cfrac{1}{2}\implies \cfrac{A}{C}=\cfrac{1}{2}\implies 2A=1C\implies 2(-9,-7)=1(x,y)\\\\[-0.35em] ~\dotfill\\\\ B=\left(\frac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \frac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Binternal%20division%20of%20a%20line%20segment%20using%20ratios%7D%20%5C%5C%5C%5C%5C%5C%20A%28-9%2C-7%29%5Cqquad%20C%28x%2Cy%29%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bratio%20from%20A%20to%20C%7D%7D%7B1%3A2%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7BA%5Cunderline%7BB%7D%7D%7B%5Cunderline%7BB%7D%20C%7D%20%3D%20%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20%5Ccfrac%7BA%7D%7BC%7D%3D%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%202A%3D1C%5Cimplies%202%28-9%2C-7%29%3D1%28x%2Cy%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20B%3D%5Cleft%28%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22x%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cquad%20%2C%5Cquad%20%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22y%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cright%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf B=\left(\cfrac{(2\cdot -9)+(1\cdot x)}{1+2}\quad ,\quad \cfrac{(2\cdot -7)+(1\cdot y)}{1+2}\right)~~=~~(-4,-6) \\\\[-0.35em] ~\dotfill\\\\ \cfrac{(2\cdot -9)+(1\cdot x)}{1+2}=-4\implies \cfrac{-18+x}{3}=-4 \\\\\\ -18+x=-12\implies \boxed{x=6} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{(2\cdot -7)+(1\cdot y)}{1+2}=-6\implies \cfrac{-14+y}{3}=-6 \\\\\\ -14+y=-18\implies \boxed{y=-4}](https://tex.z-dn.net/?f=%5Cbf%20B%3D%5Cleft%28%5Ccfrac%7B%282%5Ccdot%20-9%29%2B%281%5Ccdot%20x%29%7D%7B1%2B2%7D%5Cquad%20%2C%5Cquad%20%5Ccfrac%7B%282%5Ccdot%20-7%29%2B%281%5Ccdot%20y%29%7D%7B1%2B2%7D%5Cright%29~~%3D~~%28-4%2C-6%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B%282%5Ccdot%20-9%29%2B%281%5Ccdot%20x%29%7D%7B1%2B2%7D%3D-4%5Cimplies%20%5Ccfrac%7B-18%2Bx%7D%7B3%7D%3D-4%20%5C%5C%5C%5C%5C%5C%20-18%2Bx%3D-12%5Cimplies%20%5Cboxed%7Bx%3D6%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B%282%5Ccdot%20-7%29%2B%281%5Ccdot%20y%29%7D%7B1%2B2%7D%3D-6%5Cimplies%20%5Ccfrac%7B-14%2By%7D%7B3%7D%3D-6%20%5C%5C%5C%5C%5C%5C%20-14%2By%3D-18%5Cimplies%20%5Cboxed%7By%3D-4%7D)
Answer:
<u>The probability of winning three games in a row is 1/64 or 1.6%</u>
Step-by-step explanation:
Probability of winning a game = 1/4
Probability of winning two games in a row = 1/4 * 1/4 = 1/16
Probability of winning three games in a row = 1/4 * 1/4 * 1/4 = 1/64
Probability of winning three games in a row = (1/4)³ = 1/64
1/64 = 0.015625
1/64 = 1.6% (rounding to the next tenth)
Answer:
$2.90
Step-by-step explanation:
<u>Lets look at the information given:</u>
Scott made 3 necklaces
$14.40 is the cost for both the beads and pendants for all 3 necklaces
$5.70 was the cost of just beads for all 3 necklaces
Each necklace has 1 pendant
The first step to solving this equation is subtracting the cost of the beads from the total cost for the necklaces:
$14.40 - $5.70= $8.70
Now we know that cost for the 3 pendants for all 3 necklaces was $8.70, but we need to find how much EACH pendant costs. To find out, we simply divide the total cost for all 3 pendants by 3:
$8.70 ÷ 3 = $2.90
So each pendent costs $2.90