93AU from the surface of the sun, or the third planet out from the surface of the sun.
Answer:
Chromosomes become visible, crossing-over occurs, the nucleolus disappears, the meiotic spindle forms, and the nuclear envelope disappears.
Explanation:
The duplicated homologous chromosomes pair, and crossing-over (the physical exchange of chromosome parts) occurs.
Apoenzyme and a non-protein
Plant cells, but not animal cells
Animal cells, but not plant cells
Both plant cells and animal cells
Neither animal cells nor plant cells
Answer:
Both plant cells and animal cells
Explanation:
The process where the energy locked up in food is extracted take place in both plants and animal cells.This process is called Cellular respiration.It is the process of combining inhaled and diffused oxygen in the blood with assimilated food substances (glucose,amino acids,fatty acids and glycerol) to produce energy.
In both cells it takes place in the the cytoplasm and mitochondrial.
It begins with Glycolysis, followed by Krebs's Cycle..These two steps gives certain of ATPs to these cells
.However,the largest amount of ATPs is synthesized during oxidative phosphorylation for maximum of energy to be produced.This process involved the chemiosmosis where protons were diffused into the intramembranes by the proton pump (PMF) and diffused back into the matrix of the mitochondria to generate the electrochemical gradients.
The electrochemical gradients generate the energy for enzymes ATPase synthase needed for phosphorylation of ADP with Pi to give ATPs.
The oxygen act act the final electron acceptor.
Answer:
"Last week, you looked at both animal & plant cells. Both of these cells were diploid somatic eukaryotic. This week, you'll be looking at a different, but very important, type of cell: sexual cells. Two gametes, one from a female & one from a male, merge during the process of fecundation/fertilization to form a zygote. All in the organism will develop from this initial diploid cell".
Explanation:
There are two principal types of cells in the organism: Somatic cells that can not form any gametes, and germ cells that are in charge of gamete production. Both somatic cells and germinal cells will end their cycle dividing and becoming two daughter cells with the same genetic dotation after mitosis.
Somatic cells are any cell in the body excepting from sperm and egg cells. These somatic cells are diploid, they contain two chromosomes sets, each one inherited from each parental. Mutations in somatic cells affect the individual but the progeny does not inherit them. In this sense, these cells do not contribute to anything to inheritance terms through genetics.
Germ cells are the reproductive diploid cells, and the sexual organs (testes and ovaries) are the ones that produce them. These cells might suffer mitosis to form more sexual cells, and then a few of them suffer meiosis giving place to haploid gametes called sperm and egg cells through the gametogenesis process. Each germ cell produces 4 haploid gametes after meiosis.
Gametes´destiny is to merge in the process of fecundation, during which a new diploid cell called zygote emerges through fertilization. The zygote is a complete cell from the structural point of view that suffer successive mitosis to form the new organism.