1) -10x+y=4
Now, you should substitute x in every situation.
* x=-2 <em>=> -10*(-2)+y=4... 20+y=4... <u>y=-16</u></em>
<em />* x=-1 =>-10*(-1)+y=4... 10+y=4... <u>y=-6</u>
<u />*x=0 => -10*0+y=4... <u>y=4</u>
<u />* x=1 => -10*1+y=4... -10+y=4... <u>y=14</u>
<u />* x=2 => -10*2+y=4... -20+y=4... <u>y=24</u>
<u>2)</u> -5x-1=y
For example: x=0
-5*0-1=-1
<u>
</u>
Answer:
the mod always gives positive answers
so the answer will be
Step-by-step explanation:
x+2+4=11
x+6=11
x=11-6
x=5
answer is x is 5
3 125
---= ------
2 ?
2×125
--------
3
Ans.£83.33
now, let's take a peek at the denominators, we have 3 and 8 and 12, we can get an LCD of 24 from that.
Let's multiply both sides by the LCD of 24, to do away with the denominators.
so, let's recall that a whole is "1", namely 500/500 = 1 = whole, or 5/5 = 1 = whole or 24/24 = 1 = whole. So the whole class will yield a fraction of 1/1 or just 1.
![\bf ~\hspace{7em}\stackrel{\textit{basketball}}{\cfrac{1}{3}}+\stackrel{\textit{soccer}}{\cfrac{1}{8}}+\stackrel{\textit{football}}{\cfrac{5}{12}}+\stackrel{\textit{baseball}}{x}~=~\stackrel{\textit{whole}}{1} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{24}}{24\left(\cfrac{1}{3}+\cfrac{1}{8}+\cfrac{5}{12}+x \right)=24(1)}\implies (8)1+(3)1+(2)5+(24)x=24 \\\\\\ 8+3+10+24x=24\implies 21+24x=24\implies 24x=3 \\\\\\ x=\cfrac{3}{24}\implies x=\cfrac{1}{8}](https://tex.z-dn.net/?f=%5Cbf%20~%5Chspace%7B7em%7D%5Cstackrel%7B%5Ctextit%7Bbasketball%7D%7D%7B%5Ccfrac%7B1%7D%7B3%7D%7D%2B%5Cstackrel%7B%5Ctextit%7Bsoccer%7D%7D%7B%5Ccfrac%7B1%7D%7B8%7D%7D%2B%5Cstackrel%7B%5Ctextit%7Bfootball%7D%7D%7B%5Ccfrac%7B5%7D%7B12%7D%7D%2B%5Cstackrel%7B%5Ctextit%7Bbaseball%7D%7D%7Bx%7D~%3D~%5Cstackrel%7B%5Ctextit%7Bwhole%7D%7D%7B1%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B24%7D%7D%7B24%5Cleft%28%5Ccfrac%7B1%7D%7B3%7D%2B%5Ccfrac%7B1%7D%7B8%7D%2B%5Ccfrac%7B5%7D%7B12%7D%2Bx%20%5Cright%29%3D24%281%29%7D%5Cimplies%20%288%291%2B%283%291%2B%282%295%2B%2824%29x%3D24%20%5C%5C%5C%5C%5C%5C%208%2B3%2B10%2B24x%3D24%5Cimplies%2021%2B24x%3D24%5Cimplies%2024x%3D3%20%5C%5C%5C%5C%5C%5C%20x%3D%5Ccfrac%7B3%7D%7B24%7D%5Cimplies%20x%3D%5Ccfrac%7B1%7D%7B8%7D)