We write to expressions since there are two unknown here which is x and y. The first expression is the <span>sum of two numbers, x and y, is 12.
x + y = 12
The second expression is that the </span><span>difference of x and two times y is 6.
x -2y = 6
Therefore, the values of x and y are 10 and 2.</span>
288 divided by 12 = 24
240 divided by 10 = 24
We performed the following operations:
![f(x)=\sqrt[3]{x}\mapsto g(x)=2\sqrt[3]{x}=2f(x)](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20g%28x%29%3D2%5Csqrt%5B3%5D%7Bx%7D%3D2f%28x%29)
If you multiply the parent function by a constant, you get a vertical stretch if the constant is greater than 1, a vertical compression if the constant is between 0 and 1. In this case the constant is 2, so we have a vertical stretch.
![g(x)=2\sqrt[3]{x}\mapsto h(x)=-2\sqrt[3]{x}=-g(x)](https://tex.z-dn.net/?f=g%28x%29%3D2%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20h%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D%3D-g%28x%29)
If you change the sign of a function, you reflect its graph across the x axis.
![h(x)=-2\sqrt[3]{x}\mapsto m(x)=-2\sqrt[3]{x}-1=h(x)-1](https://tex.z-dn.net/?f=h%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20m%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D-1%3Dh%28x%29-1)
If you add a constant to a function, you translate its graph vertically. If the constant is positive, you translate upwards, otherwise you translate downwards. In this case, the constant is -1, so you translate 1 unit down.
Answer:
a y = 2
b.y = 14
c. y =56
Step-by-step explanation:
a .6 (1)- 4=2
y=2
b. 6 (3)- 4
=18-4
y=14
c. 6 (10) - 4
= 60 - 4 =56