Answer: (a) The angle the ramp forms with the driveway, s° = 4.004° (3 d.p)
(b) The driveway has to be, s = 28.57 ft
(c) The ramp will be 28.64 ft long
Step-by-step explanation:
First key thing to know is that the %grade of a ramp = rise/ramp run
%grade of a ramp = 7% = 0.07
(Kindly find attached a diagram to assist with understanding).
Also note that, <em>the ramp run is not the same as the ramp length</em>
(a) the angle, θ, is the angle of slope between the driveway and the ramp,
tan θ = 0.07,
θ = tan⁻¹ 0.07 = 4.004° (3 d.p)
(b) the length of the driveway (s) is the same as the length of the ramp run, so, %grade of a ramp = rise/ramp run
0.07 = 2/s
s = 2/0.07 = 28.57 ft (2 d.p)
(c) the length of the ramp can be found by using Pythagoras' theorem,
L = ramp length =
L = 
L = 
L = 28.64 ft (2 d.p)