9514 1404 393
Answer:
(a) none of the above
Step-by-step explanation:
The largest exponent in the function shown is 2. That makes it a 2nd-degree function, also called a quadratic function. The graph of such a function is a parabola -- a U-shaped curve.
The coefficient of the highest-degree term is the "leading coefficient." In this case, that is the coefficient of the x² term, which is 1. When the leading coefficient of an even-degree function is positive, the U curve has its open end at the top of the graph. We say it "opens upward." (When the leading coefficient is negative, the curve opens downward.)
This means the bottom of the U is the minimum value the function has. For a quadratic in the form ax²+bx+c, the horizontal location of the minimum on the graph is at x=-b/(2a). This extreme point on the curve is called the "vertex."
This function has a=1, b=1, and c=3. The minimum of the function is where ...
x = -b/(2·a) = -1/(2·1) = -1/2
This value is not listed among the answer choices, so the correct choice for this function is ...
none of the above
__
The attached graph of the function confirms that the minimum is located at x=-1/2
_____
<em>Additional comment</em>
When you're studying quadratic functions, there are few formulas that you might want to keep handy. The formula for the location of the vertex is one of them.
I think it’s B but I could be wrong
Answer:
rkjwijdekwokdjf
Step-by-step explanation:
err3oiw09eiowjdoiwqkjwsowkj
5 miles
using the formula
time =
, then his distance can be calculated
+
= 1
+
= 1
= 1 ( multiply both sides by 30 )
6d = 30 ( divide both sides by 6 )
d = 5
He lives 5 miles from school
Answer/Step-by-step explanation:
Let x hours be the number of hours Issac worked
x+6 hours be the number of hours Ruby worked
4(x+6) hours be the number of hours Svetlana worked.
x + x + 6 + 4(x+6) = 126
x + x + 6 + 4x +24 = 126
6x +30 = 126
6x = 96
x = 16
Therefore, Issac worked 16 hours.
Ruby worked 16+6 = 22 hours
Svetlana worked 22 × 4 = 88 hours.
<u><em>If helpful, please mark as brainliest! =)</em></u>