200+12m= 644
subtract 200 from both sides
12m= 444
divide both sides by 12
m= 37
he sold 37 albums
Step-by-step explanation:
x=14-6y/3
substituting x=14-6y/3 into eqn 2
2(14-6y/3)+8y=2
multiplying through by 3
2(14-6y/3)×3 +8y×3=2×3
2(14-6y)+24y=6
28-12y+24y=6
28-12y=6
28-6=12y
22=12y
22/12=y
finding x
2x+8(22/12)=2
2x+44/3=2
2x=2-44/3
x=(-38/3)/2
×=-38/6
Answer:
1) 8
2) 450 ft^2
Step-by-step explanation:
Each triangle takes half a square worth of space, so if you add up 2 triangles for 1 square that is 1/4 of the area, multiply that by 4 and you get 8 cameras.
The left over space in the store is the same amount of space as all the cameras space added together since each camera takes up half a square. That way 4 cameras(each 112.5 ft^2 each) equals 1/2 of the room which added together is 450 ft^2, the other half would be the left over space, 450 ft^2.
Answer:
![\left[\begin{array}{ccc}32&-55\\3&39\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D32%26-55%5C%5C3%2639%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
![\left[\begin{array}{ccc}0&-15\\3&15\end{array}\right] +\left[\begin{array}{ccc}32&-40\\0&24\end{array}\right] =\left[\begin{array}{ccc}0+32&-15+(-40)\\3+0&15+24\end{array}\right] = \left[\begin{array}{ccc}32&-55\\3&39\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-15%5C%5C3%2615%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D32%26-40%5C%5C0%2624%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%2B32%26-15%2B%28-40%29%5C%5C3%2B0%2615%2B24%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D32%26-55%5C%5C3%2639%5Cend%7Barray%7D%5Cright%5D)
The last line of a proof represents: The conclusion!