I hope this is the answer you’re looking for
Distention from accumulating gas and fluid impede venous return, leading to bowel wall ischemia.
<u>Explanation:</u>
When the bowel lumen is obstructed, the gases and fuids starts accumulating as a repose to the obstruction. The accumulated fluid and gases results in the swelling or enlargement. This will result in the production of electrolytes and water inside the mumen that is in obstruction. The wall of the bowle will also enlarge and becomes swollen.
As more and more fluid and gas gets accumulated in the bowel, the bowel wall will be enlarged and as there is an increase in the pressure due to this accumulation, the fluid starts to leak from the wall. This will enter peritoneum and necrosis. This will result in an acute emergency when it becomes serious.
I think it’s true i think and D
Explanation:
The polar nature of the membrane’s surface can attract polar molecules, where they can later be transported through various mechanisms. Also, the non-polar region of the membrane allows for the movement of small non-polar molecules across the membrane’s interior, while preventing the movement of polar molecules, thus maintaining the cell’s composition of solutes and other substances by limiting their movement.
Further explanation:
Lipids are composed of fatty acids which form the hydrophobic tail and glycerol which forms the hydrophilic head; glycerol is a 3-Carbon alcohol which is water soluble, while the fatty acid tail is a long chain hydrocarbon (hydrogens attached to a carbon backbone) with up to 36 carbons. Their polarity or arrangement can give these non-polar macromolecules hydrophilic and hydrophobic properties i.e. they are amphiphilic. Via diffusion, small water molecules can move across the phospholipid bilayer acts as a semi-permeable membrane into the extracellular fluid or the cytoplasm which are both hydrophilic and contain large concentrations of polar water molecules or other water-soluble compounds.
Similarly via osmosis, the water passes through the membrane due to the difference in osmotic pressure on either side of the phospholipid bilayer, this means that the water moves from regions of high osmotic pressure/concentration to regions of low pressure/ concentration to a steady state.
Transmembrane proteins are embedded within the membrane from the extracellular fluid to the cytoplasm, and are sometimes attached to glycoproteins (proteins attached to carbohydrates) which function as cell surface markers. Carrier proteins and channel proteins are the two major classes of membrane transport proteins; these allow large molecules called solutes (including essential biomolecules) to cross the membrane.
Learn more about membrane components at brainly.com/question/1971706
Learn more about plasma membrane transport at brainly.com/question/11410881
#LearnWithBrainly