He demonstrated that SCD and sickle cell trait were due to the presence of abnormal 8-globin polypeptides in red blood cells. He demonstrated that the electrophhoretic mobility of B-globin from patients with SCD was different from that of healthy individuals. He demonstrated that both parents of multiple patients with SCD had low levels of sickled red blood cells. He hypothesized that SCD was a recessive trait and that the parents of patients with SCD would be heterozygous carriers. He demonstrated that the difference between B-globin polypeptides in individuals who were healthy and those with SCD is an amino acid substitution. He performed a peptide fingerprint analysis on B-globin from individuals with 84 84 and 89 88, which identified the segment of B-globin that was changed by the BS mutation. James Neel Linus Pauling Vernon Ingram
hope it helps..
electricity, chemistry, and astronomy
Ans.
The first pass effect is defined as a phenomenon of metabolism of drug, in which drug concentration is greatly decreased before reaching the systemic circulation. It represents that fraction of drug lost, at the time of absorption of drug in gut.
Thus, the client is not receiving all the dosage of ingested drug (aspirin) because of the 'first pass effect.'
Answer:
Explanation:
The double-stranded DNA molecule has the potential to store genetic information in either strand, although in most organisms <u>only one strand is used to encode any particular gene</u>.
The template strand is the non-coding strand. The coding strand of DNA is the non-template (mRNA-like) strand (see attachment).
Thus, genetic information is expressed by transcription of the non-coding (template) strand of DNA, <u>which produces an mRNA molecule that has the same sequence as the coding strand of DNA</u>. Therefore, if a mRNA is transcribed from the non-template strand, the genetic information will not be contained in that strand and it would not produce a correct protein.
Answer:
With nuclear fission, a large atomic nucleus (such as a uranium nucleus) breaks apart into smaller nuclei, and energy is released. With nuclear fusion, small atomic nuclei (such as hydrogen) join to become larger nuclei, and energy is released. Fusion of hydrogen releases much more energy than any other type of either fusion or fission. Note that the dividing line between heavy nuclei and light nuclei is the iron nucleus, which is at the perfect point of nuclear stability, so that neither fusion nor fission of iron nuclei would release any energy.