Step-by-step explanation:
This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.
(x − y) + (z − x) + (y − z) = 0
Subtract two terms to the other side and take the tangent:
x − y = -((z − x) + (y − z))
tan(x − y) = tan(-((z − x) + (y − z)))
Use reflection property:
tan(x − y) = -tan((z − x) + (y − z))
Now use angle sum identity:
tan(x − y) = -[tan(z − x) + tan(y − z)] / [1 − tan(z − x) tan(y − z)]
tan(x − y) = [tan(z − x) + tan(y − z)] / [tan(z − x) tan(y − z) − 1]
tan(x − y) [tan(z − x) tan(y − z) − 1] = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) − tan(x − y) = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) = tan(x − y) + tan(z − x) + tan(y − z)
Answer:
1/5
Step-by-step explanation:
1 + 4 = 5
1/5
Answer:
P(B) = 8/12
P(R | B) = 4/11
P(B ∩ R) = 8/33
The probability that the first ball chosen is black and the second ball chosen is red is about 24 percent.
Step-by-step explanation:
I just got it right on edge 2020. Good luck with school!!
Answer:
37 1/2
Step-by-step explanation:
multiply the two numbers if their is an “of” in the statement
Answer: false
Step-by-step explanation:
If f and g are increasing on I, this implies that f' > 0 on I and g' > 0 on I. That is both f' and g' have a positive slope. However,
Using product rule;
(fg)' = fd(g) + gd(f)
(fg)' = f * g' + f' * g
and although it is given that g' and f' are both positive we don't have any information about the sign of the values of the functions themselves(f and g). Therefore, if at least one of the functions has negative values there is the possibility that the derivative of the product will be negative. For example;
f = x, g = 5x on I = (-5, -2)
f' = 1 and g' =5 both greater than 0
f and g are both lines with positive slopes therefore they are increasing, but f * g = 5x^2 is decreasing on I.