
Substituting this into the other ODE gives

Since
, it follows that
. The ODE in
has characteristic equation

with roots
, admitting the characteristic solution

From the initial conditions we get



So we have

Take the derivative and multiply it by -1/4 to get the solution for
:

The solution is x < 3.
Solution:
The given expression is 3x + 4 < 13.
To solve the given inequality.
3x + 4 < 13
Subtract 4 tiles on both sides of the inequality.
⇒ 3x + 4 – 4 < 13 – 4
⇒ 3x < 9
Divide by 3 tiles on both sides of the inequality.
⇒ 
⇒ x < 3
Hence the solution is x < 3.
Answer:
(2x - 5 ) (3x^2 + 5x - 7) = 6x^3 - 5x^2 - 39x - 35
The product of 2x – 5 and 3x2 + 5x - 7equal to the product of 5x - 2 and 3x2 + 5x - 7 are not equal.
Step-by-step explanation:
Product means multiplication
Product of 2x - 5 and 3x^2 + 5x - 7
(2x - 5 ) (3x^2 + 5x - 7)
= 6x^3 + 10x^2 - 14x - 15x^2 - 25x - 35
Collect like terms
= 6x^3 + 10x^2 - 15x^2 - 14x - 25x - 35
= 6x^3 - 5x^2 - 39x - 35
Product of 5x - 2 and 3x^2 + 5x - 7
(5x - 2) (3x^2 + 5x - 7)
= 15x^3 + 25x^2 - 35x - 6x^2 - 10x + 14
Collect like terms
= 15x^3 + 25x^2 - 6x^2 - 35x - 10x + 14
= 15x^3 + 19x^2 - 45x + 14
The product of 2x – 5 and 3x^2 + 5x - 7equal to the product of 5x - 2 and 3x^2 + 5x - 7 are not equal.
They both consist of different variables in their multiplier
Answer:
2.5
Step-by-step explanation:
If i am correct the first rectangle is 3 and the second is 7.5.
7.5 divided by 3 equals 2.5