<u>7.1 cm long is the arc</u><u> intersected by a central angle .</u>
What is length of an arc?
- The arc length of a circle can be calculated with the radius and central angle using the arc length formula.
- Length of an Arc = θ × r, where θ is in radian. Length of an Arc = θ × (π/180) × r, where θ is in degree.
Given,
Central angle = π / 2
radius = 4.5 cm
we apply formula of length of arc.
length of the arc = angle × radius
= (π/2) × (4.5 cm)
Now put value of π = 3.14
length of the arc = (3.14 / 2) × (4.5) cm
= 7.065 cm ≈ 7.1 cm
Therefore, 7.1 cm long is the arc intersected by a central angle .
Learn more about<u> </u> length of an arc
brainly.com/question/16991078
#SPJ4
Probability of getting Green is 1/4
1/4 ×680 = 170
so choose nearest answer will 187
Answer: 95
Step-by-step explanation:
That’s the same as 0.95 of 100. That’s because 0.95 represents 0.95 and 100 represents 100, the of is the same as x. You can switch the two numbers and you can still get the same answer. So, 0.95 of 100 is 95.