$8,175
you may have to work it out if the numbers are different but this should be the correct answer
Answer:
The probability that Kelly will place 1st and Andy will place 2nd is 1/90, or 1.11%.
Step-by-step explanation:
Since Kelly Slater and Andy Irons are in a surf competition among 10 competitors, to determine, if all surfers are at an equal surfing level, then what is the probability that Kelly will place 1st and Andy will place 2nd, the following calculation must be performed:
1/10 x 1/9 = X
0.1 x 0.11 = X
0.01111 = X
1/90 = 0.011111 = X
Therefore, the probability that Kelly will place 1st and Andy will place 2nd is 1/90, or 1.11%.
Answer: no
Step-by-step explanation: here are all the ratios equivalent to 18:6 18 : 636 : 1254 : 1872 : 2490 : 30108 : 36126 : 42144 : 48162 : 54180 : 60198 : 66216 : 72234 : 78252 : 84270 : 90288 : 96306 : 102324 : 108342 : 114360 : 120378 : 126396 : 132414 : 138432 : 144450 : 150468 : 156486 : 162504 : 168522 : 174540 : 180558 : 186576 : 192594 : 198612 : 204630 : 210648 : 216666 : 222684 : 228702 : 234720 : 240738 : 246756 : 252774 : 258792 : 264810 : 270828 : 276846 : 282864 : 288882 : 294900 : 300918 : 306936 : 312954 : 318972 : 324990 : 3301008 : 3361026 : 3421044 : 3481062 : 3541080 : 3601098 : 3661116 : 3721134 : 3781152 : 3841170 : 3901188 : 3961206 : 4021224 : 4081242 : 4141260 : 4201278 : 4261296 : 4321314 : 4381332 : 4441350 : 4501368 : 4561386 : 4621404 : 4681422 : 4741440 : 4801458 : 4861476 : 4921494 : 4981512 : 5041530 : 5101548 : 5161566 : 5221584 : 5281602 : 5341620 : 5401638 : 5461656 : 5521674 : 5581692 : 5641710 : 5701728 : 5761746 : 5821764 : 5881782 : 5941800 : 600
https://goodcalculators.com/ratio-calculator/
© 2015-2021 goodcalculators.com
Answer: (20.86, 22.52)
Step-by-step explanation:
Formula to find the confidence interval for population mean :-

, where
= sample mean.
z*= critical z-value
n= sample size.
= Population standard deviation.
By considering the given question , we have


n= 58
Using z-table, the critical z-value for 95% confidence = z* = 1.96
Then, 95% confidence interval for the amount of time spent on administrative issues will be :





Hence, the 95% confidence interval for the amount of time spent on administrative issues = (20.86, 22.52)