Given the graph of the function

and the graph of the function


when f(x) = g(x).
This occurs at the point(s) of intersection of the graphs of the function f(x) and g(x).
From the graph, we can approximate the points of intersection of the graphs of the function f(x) and g(x) to pe points
(-1.9, 13.7) and (2.7, 0).
Answer:
0.508
Step-by-step explanation:
Answer: 384 in
Step-by-step explanation: 12 in*10 in=384 in
Answer:
n<50
Step-by-step explanation:
7/2*5n + 14<49
7n/2*5+14<49
(7n)+(2*5)14/2*5 <49
7n+10*14/2*5 <49
7n+140/2*5 <49
7n+140/10 <49
7n+140 < 10*49
7n+140 < 490
(7n+140)+(-140)<490+(-140)
7n+140-140<490-140
7n<350
7n/7 < 350/7
n<2*5^2*7/7
n<2*5^2
n<2*25
n<50
C i thinks, but im not even sure so