1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gennadij [26K]
2 years ago
5

Read image for instructions

Mathematics
1 answer:
Oliga [24]2 years ago
3 0

The last part answers the first part for you, just look at the y-values.

In other words:

<em>A'</em><em> </em>(-8, 2)

<em>B'</em> (-4, 3)

<em>C'</em> (-2, 8)

<em>D'</em> (-10, 6)

Explanation:

When you reflect any point over the x-axis, the y-value of the ordered pair is going to change.

This makes sense especially considering that the x-axis is horizontal, so the only way you could cross is to move up or down. If you were to move left or right, you'd only be able to cross the y-axis, since it's vertical.

Now for the last part, as I mentioned above, if you are reflecting across the y-axis, the x-values of the ordered pair is going to change.

<em>A'</em><em>'</em> (8, 2)

<em>B'</em><em>'</em> (4, 3)

<em>C'</em><em>'</em> (2, 8)

<em>D'</em><em>'</em> (10, 6)

Take note that the only thing that changes for the respective value is its sign, while the number itself stays the same.

You might be interested in
Solve system of equation by elimination:<br> 4x - y = 1<br> 3x + y = -1
riadik2000 [5.3K]
The answer would be a: (0, -1). Hope this helps.
8 0
2 years ago
You are given 4 matrices M1, M2, M3, M4 and you are asked to determine the optimal schedule for the product M1 ×M2 × M3 ×M4 that
alexandr1967 [171]

Answer:

Step-by-step explanation:

first method is to try out all possible combinations and pick out the best one which has the minimum operations but that would be infeasible method if the no of matrices increases  

so the best method would be using the dynamic programming approach.

A1 = 100 x 50

A2 = 50 x 200

A3 = 200 x 50

A4 = 50 x 10

Table M can be filled using the following formula

Ai(m,n)

Aj(n,k)

M[i,j]=m*n*k

The matrix should be filled diagonally i.e., filled in this order

(1,1),(2,2)(3,3)(4,4)

(2,1)(3,2)(4,3)

(3,1)(4,2)

(4,1)

<u>                  Table M[i, j]                                             </u>

             1                      2                  3                    4

4    250000          200000        100000                0  

3      

750000        500000            0

2      1000000             0

1            

0

Table S can filled this way

Min(m[(Ai*Aj),(Ak)],m[(Ai)(Aj*Ak)])

The matrix which is divided to get the minimum calculation is selected.

Table S[i, j]

           1          2         3        

4

4          1           2         3

3          

1          2

2            1

1

After getting the S table the element which is present in (4,1) is key for dividing.

So the matrix multiplication chain will be (A1 (A2 * A3 * A4))

Now the element in (4,2) is 2 so it is the key for dividing the chain

So the matrix multiplication chain will be (A1 (A2 ( A3 * A4 )))

Min number of multiplications: 250000

Optimal multiplication order: (A1 (A2 ( A3 * A4 )))

to get these calculations perform automatically we can use java

code:

public class MatrixMult

{

public static int[][] m;

public static int[][] s;

public static void main(String[] args)

{

int[] p = getMatrixSizes(args);

int n = p.length-1;

if (n < 2 || n > 15)

{

System.out.println("Wrong input");

System.exit(0);

}

System.out.println("######Using a recursive non Dyn. Prog. method:");

int mm = RMC(p, 1, n);

System.out.println("Min number of multiplications: " + mm + "\n");

System.out.println("######Using bottom-top Dyn. Prog. method:");

MCO(p);

System.out.println("Table of m[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%5d ", i);

System.out.print("\n---+");

for (int i=1; i<=6*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=1; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j; i++)

System.out.printf("%5d ", m[i][j]);

System.out.println();

}

System.out.println("Min number of multiplications: " + m[1][n] + "\n");

System.out.println("Table of s[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%2d ", i);

System.out.print("\n---+");

for (int i=1; i<=3*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=2; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j-1; i++)

System.out.printf("%2d ", s[i][j]);

System.out.println();

}

System.out.print("Optimal multiplication order: ");

MCM(s, 1, n);

System.out.println("\n");

System.out.println("######Using top-bottom Dyn. Prog. method:");

mm = MMC(p);

System.out.println("Min number of multiplications: " + mm);

}

public static int RMC(int[] p, int i, int j)

{

if (i == j) return(0);

int m_ij = Integer.MAX_VALUE;

for (int k=i; k<j; k++)

{

int q = RMC(p, i, k) + RMC(p, k+1, j) + p[i-1]*p[k]*p[j];

if (q < m_ij)

m_ij = q;

}

return(m_ij);

}

public static void MCO(int[] p)

{

int n = p.length-1;     // # of matrices in the product

m    =    new    int[n+1][n+1];        //    create    and    automatically initialize array m

s = new int[n+1][n+1];

for (int l=2; l<=n; l++)

{

for (int i=1; i<=n-l+1; i++)

{

int j=i+l-1;

m[i][j] = Integer.MAX_VALUE;

for (int k=i; k<=j-1; k++)

{

int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

if (q < m[i][j])

{

m[i][j] = q;

s[i][j] = k;

}

}

}

}

}

public static void MCM(int[][] s, int i, int j)

{

if (i == j) System.out.print("A_" + i);

else

{

System.out.print("(");

MCM(s, i, s[i][j]);

MCM(s, s[i][j]+1, j);

System.out.print(")");

}

}

public static int MMC(int[] p)

{

int n = p.length-1;

m = new int[n+1][n+1];

for (int i=0; i<=n; i++)

for (int j=i; j<=n; j++)

m[i][j] = Integer.MAX_VALUE;

return(LC(p, 1, n));

}

public static int LC(int[] p, int i, int j)

{

if (m[i][j] < Integer.MAX_VALUE) return(m[i][j]);

if (i == j) m[i][j] = 0;

else

{

for (int k=i; k<j; k++)

{

int   q   =   LC(p,   i,   k)   +   LC(p,   k+1,   j)   +   p[i-1]*p[k]*p[j];

if (q < m[i][j])

m[i][j] = q;

}

}

return(m[i][j]);

}

public static int[] getMatrixSizes(String[] ss)

{

int k = ss.length;

if (k == 0)

{

System.out.println("No        matrix        dimensions        entered");

System.exit(0);

}

int[] p = new int[k];

for (int i=0; i<k; i++)

{

try

{

p[i] = Integer.parseInt(ss[i]);

if (p[i] <= 0)

{

System.out.println("Illegal input number " + k);

System.exit(0);

}

}

catch(NumberFormatException e)

{

System.out.println("Illegal input token " + ss[i]);

System.exit(0);

}

}

return(p);

}

}

output:

7 0
3 years ago
Solve for x. round to the nearest hundredth if necessary.
iris [78.8K]

Answer: x=11.47

Step-by-step explanation:

Given the angle of 55 degrees, you know that the adjacent side is "x" and the length of the hypotenuse is 20.

Therefore, you need to remember the following identity:

cos\alpha=\frac{adjacent}{hypotenuse}

Then, knowing that:

\alpha=55\°\\adjacent=x\\hypotenuse=20

 You need to substitute these values intocos\alpha=\frac{adjacent}{hypotenuse}:

 cos(55\°)=\frac{x}{20}

Now, you can solve for "x":

20*cos(55\°)=x\\x=11.471

Rounded to the nearest hundreth:

x=11.47

6 0
2 years ago
The formula y y-y1=m(x-x1) please tell me what is m
grandymaker [24]

Answer:

There is no value in M

Step-by-step explanation:

The equation is undefined.

6 0
3 years ago
How many constants are in the following expression?<br> 7x + 4y - 5 + 4x Help
ad-work [718]

Answer:

1

Step-by-step explanation:

-5 is a constant because its a number on its own without a variable

3 0
2 years ago
Read 2 more answers
Other questions:
  • An item has a listed price of $40. If the sales tax rate is 4%, how much is the sales tax (in dollars)?
    11·2 answers
  • For the function f(x)=5x-3 and g(x)=x+4 which composition produces the greatest output
    8·2 answers
  • Help me out please!!!
    11·2 answers
  • Name three solutions of x &gt; 10.5
    9·1 answer
  • Liam chooses an investment plan that requires him to make an initial investment of $8,000. Then he contributes equal monthly inv
    5·2 answers
  • HELP ASAP AND GETS SOME POINTS AND BRAINLEST!!!!
    12·2 answers
  • Evaluate the expression when n =4 n^2 - 5n+6​
    12·1 answer
  • Pls plss help meeeeeeeeeeeeeeeeeeeeee
    11·1 answer
  • Help me answer, please!
    11·1 answer
  • (Giving brainliest and 40 points)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!