I believe B, but don’t take my word
Answer:
Aceleracion = 5 m/s²
Explanation:
Dados los siguientes datos;
Velocidad inicial = 10 m/s
Velocidad final = 70 m/s
Tiempo, t = 12 segundos
Para encontrar la aceleración;
Aceleración se puede definir como la tasa de cambio de la velocidad de un objeto con respecto al tiempo.
Esto simplemente significa que la aceleración viene dada por la resta de la velocidad inicial de la velocidad final a lo largo del tiempo.
Por lo tanto, si restamos la velocidad inicial de la velocidad final y la dividimos por el tiempo, podemos calcular la aceleración de un objeto. Matemáticamente, la aceleración viene dada por la fórmula;

Sustituyendo en la fórmula, tenemos;


Aceleracion = 5 m/s²
In a parallel circuit, the equivalent resistance is the reciprocal of (the sum of the individual reciprocals).
1/R = 1/10 + 1/21 + 1/13
1/R = 0.225 mhos
R = 4.45 ohms
I = V / R
The total current out of the battery is
I = (9v)/(4.45ohms)
I = 2.02 Amperes
As the total current leaves the battery, it splits into 3 paths, and each resistor gets part of it. The 10ohm resistor gets the most current; the 21ohm resistor gets the least current. After flowing through the resistors, the 3 currents join and add up to 2.02 Amperes again, and the same current returns to the battery.
Each resistor has the same 9v of EMF across it.
For rectilinear motions, derived formulas all based on Newton's laws of motion are formulated. The equation for acceleration is
a = (v2-v1)/t, where v2 and v1 is the final and initial velocity of the rocket. We know that at the end of 1.41 s, the rocket comes to a stop. So, v2=0. Then, we can determine v1.
-52.7 = (0-v1)/1.41
v1 = 74.31 m/s
We can use v1 for the formula of the maximum height attained by an object thrown upwards:
Hmax = v1^2/2g = (74.31^2)/(2*9.81) = 281.42 m
The maximum height attained by the model rocket is 281.42 m.
For the amount of time for the whole flight of the model rocket, there are 3 sections to this: time at constant acceleration, time when it lost fuel and reached its maximum height and the time for the free fall.
Time at constant acceleration is given to be 1.41 s. Time when it lost fuel covers the difference of the maximum height and the distance travelled at constant acceleration.
2ax=v2^2-v1^2
2(-52.7)(x) = 0^2-74.31^2
x =52.4 m (distance it covered at constant acceleration)
Then. when it travels upwards only by a force of gravity,
d = v1(t) + 1/2*a*t^2
281.42-52.386 = (0)^2+1/2*(9.81)(t^2)
t = 6.83 s (time when it lost fuel and reached its maximum height)
Lastly, for free falling objects, the equation is
t = √2y/g = √2(281.42)/9.81 = 7.57 s
Therefore, the total time= 1.41+6.83+7.57 = 15.81 s