Let positive be west and negative be east because they
are contrasting in directions.
The forces are 4100, -830, and -1200
The sum of the forces is 4100 – 830 – 1200 = 2070 N.
Newton’s law F = ma is used.
2070 = 6800 a
Isolating a will give us 2070 / 6800 = a
a = 0.34 m/s^2
Answer:
18*10^10 meters
Explanation:
V= d/t 10 mins = 600 seconds
3*10^8 = d/600s
(3*10^8)*(6*10^2) = d
d = 18*10^10 m
Answer:
difference in flight time= 0.3023 hour
Explanation:
The question is incomplete, but I found it in your textbook.
Spped of aircraft = 850 km/h
Opposing speed of wind = 90km/h
Hence, the net speed when it's travelling west = 850 - 90 = 760 km/hr
The distance covered = 1200km
time taken = distance/ time = 1200/ 760 = 1.5789 hours
When coming back, the speed of the wind is complementary to the speed of the aircraft so
net speed when it's coming back = 850 +90 = 940 km/hr
time taken in this instance = 1200/ 940 = 1.2765 hours
Hence, the difference in flight time= 1.5789 - 1.2765 = 0.3023 hour
Answer:
#_time = 7.5 10⁴ s
Explanation:
In order for the astronaut to be younger than the people on earth, it follows that the speed of light has a constant speed in vacuum (c = 3 108 m / s), therefore with the expressions of special relativity we have.
t =
where t_p is the person's own time in an immobile reference frame,

let's calculate
we assume that the speed of the space station is constant
t_ = 0.99998666657 s
therefore the time change is
Δt = t - t_p
Δt = 1 - 0.9998666657
Δt = 1.3333 10⁻⁵ s
this is the delay in each second, therefore we can use a direct rule of proportions. If Δt was delayed every second, how much second (#_time) is needed for a total delay of Δt = 1 s
#_time = 1 / Δt
#_time =
#_time = 7.5 10⁴ s
Explanation:
When treating the electron as a wave, the concept of electrons orbiting the nucleus allows for the distinct energy levels.The diameter of electron orbits matches the orbit radii which also discrete the energy levels.
The small number of deflected particles were repelled from powerful heavy positively charged central cores which is known as the atomic nucleus.