Hellor rnirde ejrjfndndodnff
If my ans was helpful u can follow me
we know that
The measurement of the external angle is the semi-difference of the arcs it comprises.
so
Step 
<u>Find the measure of the arc AJ</u>
m∠BDE=![\frac{1}{2} *[measure\ arc\ AJ-measure\ arc\ BE]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2A%5Bmeasure%5C%20arc%5C%20AJ-measure%5C%20arc%5C%20BE%5D)
in this problem we have
m∠BDE=

substitute in the formula
=![\frac{1}{2} *[measure\ arc\ AJ-38\°]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2A%5Bmeasure%5C%20arc%5C%20AJ-38%5C%C2%B0%5D)
=![[measure\ arc\ AJ-38\°]](https://tex.z-dn.net/?f=%5Bmeasure%5C%20arc%5C%20AJ-38%5C%C2%B0%5D)

Step 
<u>Find the measure of the arc FH</u>
m∠FGH=![\frac{1}{2} *[measure\ arc\ AJ-measure\ arc\ FH]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2A%5Bmeasure%5C%20arc%5C%20AJ-measure%5C%20arc%5C%20FH%5D)
in this problem we have
m∠FGH=

substitute in the formula
=![\frac{1}{2} *[112\°-measure\ arc\ FH]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2A%5B112%5C%C2%B0-measure%5C%20arc%5C%20FH%5D)
=![[112\°-measure\ arc\ FH]](https://tex.z-dn.net/?f=%5B112%5C%C2%B0-measure%5C%20arc%5C%20FH%5D)

therefore
<u>the answer is</u>
the measure of the arc FH is 
Answer:
- (-3, 5), (4, 1), (-1, -5)
Step-by-step explanation:
270° counterclockwise rotation is same as 90° clockwise
<u>The rule is:</u>
<u>Given points:</u>
- A(-5, -3), B(-1, 4), C(5, -1)
<u>Translated points:</u>
- A' = (-3, 5)
- B' = (4, 1)
- C' = (-1, -5)