Answer:
<em>Trabajó 3 horas al día</em>
Step-by-step explanation:
<u>Proporcionalidad</u>
Una persona planeó terminar la obra en 15 dias, pero tardó 10 dias adicionales porque trabajó 2 horas menos por día.
Usaremos proporciones para calcular las horas de trabajo diarias.
Si 2 horas diarias representan 10 dias de atraso, entonces cada hora representa 5 dias de trabajo.
Si la obra tardaba 15 dias, entonces la persona trabajó 15/5 = 3 horas diarias.
Answer:
(-6,0.5)
Step-by-step explanation:
(-9 + -3)÷2= -6
(-4 + 5)÷2=0.5
(-6,0.5)
Answer:
if she uses a 1/4 measuring cup she would need to get 14 1/4 cups of flour
Step-by-step explanation:
Answer:
21.43 mph
Step-by-step explanation:
:)
Let y(t) represent the level of water in inches at time t in hours. Then we are given ...
y'(t) = k√(y(t)) . . . . for some proportionality constant k
y(0) = 30
y(1) = 29
We observe that a function of the form
y(t) = a(t - b)²
will have a derivative that is proportional to y:
y'(t) = 2a(t -b)
We can find the constants "a" and "b" from the given boundary conditions.
At t=0
30 = a(0 -b)²
a = 30/b²
At t=1
29 = a(1 - b)² . . . . . . . . . substitute for t
29 = 30(1 - b)²/b² . . . . . substitute for a
29/30 = (1/b -1)² . . . . . . divide by 30
1 -√(29/30) = 1/b . . . . . . square root, then add 1 (positive root yields extraneous solution)
b = 30 +√870 . . . . . . . . simplify
The value of b is the time it takes for the height of water in the tank to become 0. It is 30+√870 hours ≈ 59 hours 29 minutes 45 seconds