Center A : 375 per yr
Center B : 35 + 12(12) + 5(52) = 35 + 144 + 260 = 439 per yr
I multiplied 12 * 12 because it was $ 12 a month and there are 12 months in a yr. I multiplied 5 * 52 because each aerobic class is $ 5 per class, and she went once per week, and there are 52 weeks in a yr.
so the cheaper one is Center A

◉ 

Before performing any calculation it's good to recall a few properties of integrals:


So we apply the first property in the first expression given by the question:
![\small \sf{\longrightarrow\int ^3_{-2} [2f(x) +2]dx= 2 \int ^3 _{-2} f(x) dx+ \int f^3 _{2} 2dx=18}](https://tex.z-dn.net/?f=%5Csmall%20%5Csf%7B%5Clongrightarrow%5Cint%20%5E3_%7B-2%7D%20%5B2f%28x%29%20%2B2%5Ddx%3D%202%20%5Cint%20%5E3%20_%7B-2%7D%20f%28x%29%20dx%2B%20%5Cint%20f%5E3%20_%7B2%7D%202dx%3D18%7D)
And we solve the second integral:


Then we take the last equation and we subtract 10 from both sides:


And we divide both sides by 2:


Then we apply the second property to this integral:

Then we use the other equality in the question and we get:


We substract 8 from both sides:

• 
Answer:
not much
Step-by-step explanation:
Answer:
Slope is positive for all x, so always increasing
Step-by-step explanation:
Increasing/decreasing depends on the slope of the function, which is f'
f'(x) = 9x² + 18x + 25
If f'(x) > 0 for all x, then his claim is correct (increasing for all x)
If there's even 1 x-value for which f'(x) is not positive, his claim is incorrect
f'(x) is a quadratic function.
9x² + 18x + 25
9(x² + 2x) + 25
9(x² + 2(x)(1) + 1² - 1²) + 25
9(x + 1)² - 9 + 25
9(x + 1)² + 16
Since the minimum value of f' is 16, it's always positive.
Hence, the claim is correct
Answer:
P(x)= x ^4-3x^3+x^2-4
Step-by-step explanation:
Given data
R(x) = 2x ^4-3x^3+2x-1
c(x)=x^4-x^2+2x+3
We know that
P(x)=R(x)-C(x)
Hence
P(x)= 2x ^4-3x^3+2x-1-(x^4-x^2+2x+3)
open bracket
P(x)= 2x ^4-3x^3+2x-1-x^4+x^2-2x-3
Collect like terms
P(x)= 2x ^4-x^4-3x^3+x^2-2x+2x-3-1
P(x)= x ^4-3x^3+x^2-4