Answer:
<h2>The answer is 1.45 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of seawater = 250 g
volume = 173 mL
It's density is

We have the final answer as
<h3>1.45 g/mL</h3>
Hope this helps you
382.85 Celsius is the temperature does 0.750 moles of an ideal gas occupy a volume of 35.9 L at 114 kPa.
Explanation:
Given data:
number of moles of the gas = 0.75 moles
volume of the gas = 35.9 liters
pressure of the gas = 114 KPa or 1.125 atm
R = 0.0821 latm/moleK
temperature of the gas T = ?
The equation used to calculate temperature from above data is ideal gas law equation.
the equation is :
PV = nRT
T = 
Putting the values in the above rewritten equation:
T = 
T = 655.9 K
To convert kelvin into celsius, formula used is
K = 273.15+ C
putting the values in the equation
C = 656 - 273.15
= 382.85 Celsius
Hey there!:
If Q = K, it means the reaction is at equilibrium.
The correct statments are as follows:
A. If Q < K, it means the forward reaction will proceed to form more products.
B. If Q > K, it means the backward reaction will proceed to form more reactants.
The statement C is true.
Hope this helps!
I think the answer is D not too sure tho
2.55 moles H20 will be produced