Let's consider the scenario after each year:
After the zeroth year, the population is: 120 000(1 + 0.04)⁰
After the first year, the population is: 120 000(1 + 0.04)¹
After the second year, the population is: 120 000(1 + 0.04)²
...
Thus, we can find the general rule:
After the nth year, the population is: 120 000(1 + 0.04)ⁿ
And after the 16th year, the population is 120 000(1 + 0.04)¹⁶ = 224 758 (rounded to nearest whole number)
What do you mean by that i mean yeah you can have as many as needed to subtract
Just subtract 2.003 and 0.520 which gives you 1.483 so there is 1.483 kilogram of soil remaining hope this helps!
If 25% of the people <em>are</em> vaccinated, then 75% of the people are <em>not</em> vaccinated. Of those not vaccinated, each has a 50% chance of contracting the disease. The probability that someone is both not vaccinated and contracts the disease is (0.75)(0.5)=0.375.
The probability that someone is vaccinated and contracts the disease is (0.25)(0.1)=0.025 (it is multiplied by 0.1 because if the vaccine is 90% effective, then there is a 10% chance someone that is vaccinated can contract the disease.
Add these together for the total: 0.375+0.025=0.4
There is a 40% chance that someone chosen at random will contract the disease.
Let x be the lengths of the steel rods and X ~ N (108.7, 0.6)
To get the probability of less than 109.1 cm, the solution is computed by:
z (109.1) = (X-mean)/standard dev
= 109.1 – 108/ 0.6
= 1.1/0.6
=1.83333, look this up in the z table.
P(x < 109.1) = P(z < 1.8333) = 0.97 or 97%