1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexandra [31]
3 years ago
14

In one school, a half of all students who like math like science as well. Also, in that school, a third of all students who like

science also like math.
b
In that school, what is the ratio of the number of students who like math to the number of students who like science?
Mathematics
2 answers:
Marizza181 [45]3 years ago
6 0

Answer: 2/3

Step-by-step explanation:

N is the total number of students

M is the number of students thta like math

S is the number of students that like science.

We know that half of the elements in M also are elements from S

And a third of the elements of S also are elements of M

And because those elements are common elements for both sets, we should have that:

M/2 = S/3

then we have that:

M = (2/3)*S

The ratio is 2/3

this means that the number of students that like math is 2/3 times the number of students that like science.

Sergeu [11.5K]3 years ago
6 0

Answer: 2/3

sceince

Step-by-step explanation:

You might be interested in
9. Triangle Construction pays Square Insurance $5,980
xxTIMURxx [149]

The triangle pay $32 more for that day than it paid per day during the first period of time.

Step-by-step explanation:

The given is,

              Triangle Construction pays Square Insurance $5,980

               To insure a construction site for 92 days

               To extend the  insurance beyond the 92 days costs $97 per day

               Triangle extends the insurance by 1 day

Step:1

              Insurance per day from the 92 days period,

                                                                           = \frac{Total insuratio for 92 days}{Period}

               Where, Total insurance for 92 days = $ 5,980

                                                               Period = 92 days

               From the values, equation becomes,

                                                                            =\frac{5980}{92}

                                                                           = $ 65 per day

Step:2

              Insurance per day after the 92 days,

                                                                           = $ 97

               Amount Pay for that day than it paid per day during the first period of time,

                                                                            =(97-65)

                                                                           = $32

Result:

             The triangle pay $32 more for that day than it paid per day during the first period of time, if  the Triangle Construction pays Square Insurance $5,980 to insure a construction site for 92 days and to extend the  insurance beyond the 92 days costs $97 per day.

                                                                         

8 0
3 years ago
PLEASE HELP!!
ruslelena [56]

Answer: 104 miles

Step-by-step explanation:

If 2.5 in = 52 mi, and 2.5 × 2 = 5, then 2.5(2) = 52(2)

5 in = 104 mi

3 0
3 years ago
Simplify the expression to a single numerical value. 3x2^3 x 2x3^2.
matrenka [14]
It’s wants 20 characters lol but the answer is b
4 0
3 years ago
Determine consecutive integer values of x between which each real zero is located.
frozen [14]

Answer:

1. x = -2 or x = sqrt(6) - 2 or x = -2 - sqrt(6)

2. x = -2.10947 or x = -0.484343 or x = 1.67884 or x = 2.91497

Step-by-step explanation:

Solve for x:

x^3 + 6 x^2 + 6 x - 4 = 0

The left hand side factors into a product with two terms:

(x + 2) (x^2 + 4 x - 2) = 0

Split into two equations:

x + 2 = 0 or x^2 + 4 x - 2 = 0

Subtract 2 from both sides:

x = -2 or x^2 + 4 x - 2 = 0

Add 2 to both sides:

x = -2 or x^2 + 4 x = 2

Add 4 to both sides:

x = -2 or x^2 + 4 x + 4 = 6

Write the left hand side as a square:

x = -2 or (x + 2)^2 = 6

Take the square root of both sides:

x = -2 or x + 2 = sqrt(6) or x + 2 = -sqrt(6)

Subtract 2 from both sides:

x = -2 or x = sqrt(6) - 2 or x + 2 = -sqrt(6)

Subtract 2 from both sides:

Answer: x = -2 or x = sqrt(6) - 2 or x = -2 - sqrt(6)

_________________________________________

Solve for x:

x^4 - 2 x^3 - 6 x^2 + 8 x + 5 = 0

Eliminate the cubic term by substituting y = x - 1/2:

5 + 8 (y + 1/2) - 6 (y + 1/2)^2 - 2 (y + 1/2)^3 + (y + 1/2)^4 = 0

Expand out terms of the left hand side:

y^4 - (15 y^2)/2 + y + 117/16 = 0

Subtract -3/2 sqrt(13) y^2 - (15 y^2)/2 + y from both sides:

y^4 + (3 sqrt(13) y^2)/2 + 117/16 = (3 sqrt(13) y^2)/2 + (15 y^2)/2 - y

y^4 + (3 sqrt(13) y^2)/2 + 117/16 = (y^2 + (3 sqrt(13))/4)^2:

(y^2 + (3 sqrt(13))/4)^2 = (3 sqrt(13) y^2)/2 + (15 y^2)/2 - y

Add 2 (y^2 + (3 sqrt(13))/4) λ + λ^2 to both sides:

(y^2 + (3 sqrt(13))/4)^2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = -y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2

(y^2 + (3 sqrt(13))/4)^2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = (y^2 + (3 sqrt(13))/4 + λ)^2:

(y^2 + (3 sqrt(13))/4 + λ)^2 = -y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2

-y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = (2 λ + 15/2 + (3 sqrt(13))/2) y^2 - y + (3 sqrt(13) λ)/2 + λ^2:

(y^2 + (3 sqrt(13))/4 + λ)^2 = y^2 (2 λ + 15/2 + (3 sqrt(13))/2) - y + (3 sqrt(13) λ)/2 + λ^2

Complete the square on the right hand side:

(y^2 + (3 sqrt(13))/4 + λ)^2 = (y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)))^2 + (4 (2 λ + 15/2 + (3 sqrt(13))/2) (λ^2 + (3 sqrt(13) λ)/2) - 1)/(4 (2 λ + 15/2 + (3 sqrt(13))/2))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 15/2 + (3 sqrt(13))/2) (λ^2 + (3 sqrt(13) λ)/2) - 1 = 8 λ^3 + 18 sqrt(13) λ^2 + 30 λ^2 + 45 sqrt(13) λ + 117 λ - 1 = 0.

Thus the root λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + (3 sqrt(13))/4 + λ)^2 = (y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)))^2

Take the square root of both sides:

y^2 + (3 sqrt(13))/4 + λ = y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)) or y^2 + (3 sqrt(13))/4 + λ = -y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) + 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2))

Solve using the quadratic formula:

y = 1/4 (sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) + sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 - 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) or y = 1/4 (sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) - sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 - 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) or y = 1/4 (sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 + 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13))) - sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13))) or y = 1/4 (-sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) - sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 + 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) where λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3))

Substitute λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3)) and approximate:

y = -2.60947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x - 1/2 = -2.60947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x - 1/2 = -0.984343 or y = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or x = -0.484343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x = -0.484343 or x - 1/2 = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or x = -0.484343 or x = 1.67884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x = -0.484343 or x = 1.67884 or x - 1/2 = 2.41497

Add 1/2 to both sides:

Answer: x = -2.10947 or x = -0.484343 or x = 1.67884 or x = 2.91497

8 0
3 years ago
Chris used 45 meters of fencing to enclose a circular garden. What is the approximate radius of the garden,rounded to the neares
kobusy [5.1K]
The length of the fencing corresponds to the length of the perimeter of the garden:
p=45 m
We also know that the perimeter of a circle is given by:
p=2 \pi r
where r is the radius of the circle.

Putting together the two equations, we have
2 \pi r = 45
from which we can find r, the radius of the garden:
r= \frac{45}{2 \pi}= \frac{45}{2 \cdot 3.14}=7.17 m
3 0
3 years ago
Read 2 more answers
Other questions:
  • Please help with my math i took a picture of it
    14·1 answer
  • Set up the appropriate function to be maximized or minimized.
    5·1 answer
  • Is this line liner<br> why or why not<br> SOMEBODY HELP ASAP
    14·1 answer
  • Write 98 as the product of prime factors in ascending order
    8·1 answer
  • Turn these phrases into algebraic expressions (PLEASE HELP)
    15·2 answers
  • Write an equation of a circle given the center (-4,4) and radius r=5
    10·1 answer
  • Discovery of Trigonometry: #28 What is the length of CA? *
    13·1 answer
  • Need answer quick for an assignment please.
    10·1 answer
  • I need help to answer this question
    14·1 answer
  • 2/7 convert it into percentage
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!